Optimal use of clotting factors and platelets

European Directorate for the Quality of Medicines & HealthCare & soins de santé

LMU KLINIKUM der universität münchen

European

symposium

proceedings

Optimal use of clotting factors and platelets

European symposium proceedings Wildbad Kreuth Initiative IV Freising, Germany

European Directorate for the Quality of Medicines & HealthCare

Optimal use of clotting factors and platelets is published by the European Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM).

All rights conferred by virtue of the International Copyright Convention are specifically reserved to the Council of Europe and any reproduction or translation requires the written consent of the Publisher.

Director of the publication: Dr S. Keitel

Page layout and cover: EDQM

European Directorate for the Quality of Medicines & HealthCare (EDQM) Council of Europe 7 allée Kastner, CS 30026 F-67081 Strasbourg France

Website: www.edqm.eu

© Council of Europe, 2016

Cover illustration:

Platelet adhesion to collagen under conditions of shear stress (20.16 dyn/cm²) and in the presence of thrombin receptor activating peptide 6 (5 μ mol/L); platelet immunofluorescence staining was performed with CD41-FITC antibody; original magnification 630 ×.

© S. Fiedler and U. Salge-Bartels, Department of Haematology and Transfusion Medicine, Paul-Ehrlich-Institut, Langen, 2016.

Introduction

In continuation of the Wildbad Kreuth Initiative, the European symposium on "optimal use of clotting factors and platelets" took place on 6 and 7 May 2016 in the Bildungszentrum Kardinal-Döpfner-Haus in Freising, Germany. The new venue had been chosen since the original location in Wildbad Kreuth was no longer available, and it turned out to be a very good choice which provided an excellent environment for plenary sessions and workshops, and for getting together for many fruitful discussions.

The symposium was the fourth in the series of Wildbad Kreuth meetings on optimal use of blood products. These conferences provide a unique forum for delegates invited from the member states of the Council of Europe. The aim of the Kreuth symposia is to be not just another scientific meeting with presentations of the latest cutting-edge scientific findings, but to provide a platform for exchanging and discussing current practices and projections of future developments across the Council of Europe area and, through workshops, to formulate useful recommendations.

The outcomes of the previous three symposia in 1999, 2009 and 2013 published in the conference proceedings were very well received in the field. In particular, the recommendations drafted in 2013 were not only disseminated in scientific publications^{1,2}, finding considerable interest in the scientific community, but were also translated into resolutions of the Committee of Ministers of the Council of Europe^{3,4}.

The fourth symposium in Freising, like the previous Kreuth conferences, addressed the optimal use of clotting factors. While new products with extended half-life are entering the scene, there is still a need to evaluate the treatment of haemophilia across Europe and to promote further harmonisation of standards. Platelet transfusion was chosen as the second main topic since there are currently several issues and controversies concerning the choice of concentrates, indications, monitoring of transfusion and open questions to be explored by research.

¹ Giangrande P, Seitz R, Behr-Gross ME, Berger K, Hilger A, Klein H, Schramm W, Mannucci PM:

Kreuth III: European consensus proposals for treatment of haemophilia with coagulation factor concentrates. Haemophilia 20:322-325 (2014)

² Sewell WAC, Kerr J, Behr-Gross ME, Peter HH, and on behalf of the Kreuth Ig Working Group (2014): European consensus proposal for immunoglobulin therapies. Eur J Immunol 44: 2207-2214

³ Resolution CM/Res(2015)3 on principles concerning haemophilia therapies

⁴ Resolution CM/Res(2015)2 on principles concerning human normal immunoglobulin therapies for immunodeficiency and other diseases

The National Authorities and the interested parties of 34 countries nominated 109 experts who accepted an invitation to meet in Freising on 6-7 May 2016 in order to exchange their experiences with the aim of developing an international consensus on the clinical use of clotting factors in haemophilia treatment and platelets transfusion.

This volume of proceedings reproduces the presentations, summaries of sessions, and the recommendations of the 2016 conference.

No. Schoourn

Prof Wolfgang Schramm (LMU)

laines fits

Prof Rainer Seitz

(PEI)

KH. Judlet

Dr Karl-Heinz Buchheit (EDQM)

Contents

Introduction	
Contents	5
Programme	6
List of participants	9
Presentations	
Bibliographies	
Session Summaries & Recommedations	

EUROPEAN SYMPOSIUM

IV Wildbad Kreuth Initiative - Optimal use of clotting factors and platelets 6-7 May 2016, Freising, Germany

Duration: 2,5 days. Working language: English

FINAL PROGRAMME

THURSDAY 5 MAY 2016

16:00-18:00

- Registration for participants
- Pre-meeting for speakers

19:00-21:30

Buffet Dinner

FRIDAY 6 MAY 2016

8:00 Welcome

Prof Dr Karl-Walter Jauch, Medical Director, University Munich Dr Michael Wierer, EDQM, Council of Europe

SESSION 1 (Plenary): Clinical use of clotting factors and platelets - Challenges

Moderators & Rapporteurs: Pier Mannucci, Rainer Seitz, Michael Wierer

- 8:30-8:50 Optimal use of blood components rationale for Wildbad-Kreuth Initiative IV Wolfgang Schramm, University of Munich, DE
- 8:50-9:10 Continuing the Kreuth Initiative: Current controversies in clinical use of blood components *Rainer Seitz, Paul Ehrlich Institut, Langen, DE*
- 9:10-9:30 Quality indicators for monitoring the Clinical Use of Blood Constantina Politis, Coordinating Haemovigilance Centre, Athens, GR
- 9:30-9:50 How novel drugs change treatment in haemophilia *Flora Peyvandi*, *University of Milan, IT*
- 9:50-10:10 Current challenges using platelet concentrates Jean-Pierre Cazenave, ARMESA, Strasbourg, FR
- 10:10-10:40 Bavarian break
- 10:40-11:00 Regulatory and health technology assessment requirements Jan Müller-Berghaus, Paul Ehrlich Institut, Langen, DE
- 11:00-11:20 Current challenges of benefit/effectiveness/risk assessment (haemophilia and platelets) *Karin Berger*, *University Hospital of Munich, DE*
- 11:20-11:40 Patients organisations' view Brian O'Mahony, European Haemophilia Consortium (EHC), Dublin, IE
- 11:40-13:00 Lunch break

WORKSHOPS (parallel sessions)

SESSION 2: Clotting Factors: Impulse Presentations (parallel session)

Moderators & Rapporteurs: *Paul Giangrande, Pier Mannucci, Brian O'Mahony, Flora Peyvandi*

- 13:00-13:20 Clinical trials of clotting factors/regulatory aspects Anneliese Hilger, Paul Ehrlich Institut, Langen, DE
- 13:20-13:40 Inhibitor development in PUPs a comparison of previous studies and the Sippet study *Frits Rosendaal, Leids Universitair Medisch Centrum, NL*
- 13:40-14:00 Inhibitors: Prophylaxis and Immune Tolerance Induction (ITI) Hervé Chambost, University Hospital of Marseille, FR
- 14:00-14:20 Access: supply, procurement, tenders Paul Giangrande, University of Oxford, UK
- 14:20-14:40 Haemophilia care in Europe and USA 2014/15 data and future trends *Patrick Robert*, the Marketing Research Bureau Inc, Orange, USA
 - SESSION 3: Platelets: Impulse Presentations (parallel session) Moderators & Rapporteurs: Karin Berger, Jean-Pierre Cazenave, Sheila MacLennan, Dorothea Stahl
- 13:00-13:20 Current practice in platelet transfusion Gregor Bein, University Hospital of Giessen & Marburg, DE
- 13:20-13:40 How do we assess clinical efficacy of platelet transfusion? *Miguel Lozano, Hospital Clinic of Barcelona, ES*
- 13:40-14:00 Infectious risk: Testing strategies, pathogen inactivation Sheila MacLennan, National Health Service, Leeds, UK
- 14:00-14:20 Immunogenicity: process related issues Olivier Garraud, National Institute of Blood Transfusion (INTS), Paris, FR
- 14:20-14:40 Availability of platelet concentrates in Europe Dorothea Stahl, Paul Ehrlich Institut, Langen, DE
- 14:40-15:00 Coffee break
- 15:00-17:00 Working Groups

Working Group 1: Clotting factor concentrates Moderators & Rapporteurs: *Paul Giangrande, Pier Mannucci, Flora Peyvandi, Brian O'Mahony*

Working Group 2: Platelet-concentrates Moderators & Rapporteurs: Jean-Pierre Cazenave, Sheila MacLennan, Dorothea Stahl, Karin Berger

17:00-17:30 Preparation of interim reports

SESSION 4 (Plenary): Summary of discussions – Interim reports of the Working Groups sessions

17:30-18:00 Presentation and synthesis of workshops

- 18:00 Close of meeting
- 20:00 Evening Dinner

SATURDAY 7 MAY 2016 – (Only open to public sector organisations representatives)

- 8:00-10:00 Discussion in the Working Groups (parallel sessions), preparation of final reports
- 10:00-10:30 Coffee break
- 10:30-12:30 Final reports from the Working Groups Moderators: *Rainer Seitz & Michael Wierer*
 - Working Group 1: Clotting factors
 - Working Group 2: Platelets
- 12:30-13:30 Lunch break
- 13:30-16:00 Conclusions and Recommendations

SCIENTIFIC PROGRAMME COMMITTEE

Prof Dr Rainer SEITZ Dr Marie-Emmanuelle BEHR-GROSS Dr Karl-Heinz BUCHHEIT Prof Dr Wolfgang SCHRAMM Dr Karin BERGER Dr Anneliese HILGER PD Dr Dorothea STAHL Dr Michael WIERER

Meeting Venue: see http://www.bildungszentrum-freising.de/

List of Participants

ABASHIDZE Marina	The Jo Ann Medical Centre	Georgia
ALVAREZ Ignacio	Macopharma	Spain
ANTONIADES Marios	Nicosia General Hospital	Cyprus
AVALISHVILI Levan	The Jo Ann Medical Centre	Georgia
BARCELO Miquel	Instituto Grifols S.A.	Spain
BAUHAUS Monika	Cerus Europe BV	The Netherlands
BAUMANN Alain	World Federation of Haemophilia	Canada
BECKER Thomas	Biotest AG	Germany
BEHR-GROSS Marie-Emmanuelle	EDQM	France
BEIN Gregor	Institut fur Klinische Immunologie und Transfusionsmedicin	Germany
BERGER Karin	University Hospital of Munchen	Germany
BLATNY Jan	Children's University Hospital Brno	Czech Republic
BOK Amanda	European Haemophilia Consortium	Belgium
BOSNJAK Bojana	Clinical Center Osijek	Croatia
BRAND Brigit	University Hospital Zurich	Switzerland
BUSER Andreas	Blutspendezentrum SRK beider Basel	Switzerland
CALCINAI Mirella	Kedrion SPA	Italy
CARDOSO Marcia	Terumo BCT	Belgium
CAVALEIRO SANCHES Ana	European Medicines Agency	United Kingdom
CAZENAVE Jean-Pierre	ARMESA	France
CEBOTARI Svetlana	National Blood Transfusion Centre	Moldova
CHAMBOST Herve	Hopital de la Timone	France
CHAY Jason Wai Mun	Blood Services Group, Health Sciences Authority	Singapore
CHECHETKIN Alexander	Research Institute of Haematology and Blood Transfusion	Russian Federation
CHILIAN Constanze	Swedish Orphan Biovitrum GmbH	Germany
CHUHRIIEV Anatolii	Association Services Blood of Ukraine	Ukraine
DE ANGELIS Vincenzo	A.O.U. Santa Maria Della Misericordia di Udine	Italy
DE TEIXEIRA Sara Maria	Hospital Santo Antonio - Centro Hospitalar Porto	Portugal
DELBOSC Arlette	Direction Generale de la Sante, Ministere de la Sante	France
DIAS Margarida Amil	Hospital Santo Antonio	Portugal
DRAGAN Cornel Valeriu	Colentina University Hospital	Romania

EIKHLER Olga	Federal Medical Biological Agency	Russian Federation
ERTUGRUL ORUC Nigar	Diskapi Yildirim Beyazit Training and Research Hospital	Turkey
FARRUGIA Albert	Kedrion Biopharma	Italy
FELDMAN Peter	Bio Products Laboratory Ltd.	United Kingdom
GARRAUD Olivier	Institut National de la Transfusion Sanguine	France
GIANGRANDE Paul	Oxford Haemophilia and Thrombosis Centre	United Kingdom
GREEN Laura	Nhs Blood and Transplant	United Kingdom
GREINACHER Andreas	Universitatsmedizin Greifswald	Germany
GROUZI Elisavet	Blood Bank and Clinical Haemostasis Department Saint Savvas Hospital	Greece
HASSAPOPOULOU Eleni	University General Hospital of Thessaloniki AHEPA	Greece
HEGEMANN Inga	University Hospital Division of Hematology	Switzerland
HERVIG Tor	Haukeland University Hospital	Norway
HILGER Anneliese	Paul-Ehrlich-Institut	Germany
IHALAINEN Jarkko	Finnish Red Cross Blood Service	Finland
IRSCH Johannes	Cerus Europe BV	The Netherlands
JAUCH Karl-Walter	Hospital of the Ludwig-Maximilians-University	Germany
KANITSAR Katherina	Octapharma Pharmazeutika Produktionsges.m.b.H.	Austria
KASPERS Sebastian	Swedish Orphan Biovitrum GmbH	Germany
KELLER Konstantin	Federal Ministry of Health	Germany
KHACHATRYAN Heghine	Hematology Center	Armenia
KLYMENKO Sergiy	National Research Centre for Radiation Medicine	Ukraine
KONGO Ulvi-Kaire	North Estonia Medical Centre Blood Centre	Estonia
KREMER Johanna Anna	Inselspital, Bern University Hospital	Switzerland
KRYZAUSKAITE Lina	Vilnius University Hospital Santariskiu Klinikos Blood Center	Lithuania
LAGUNA Pawel	Department of Pediatric Hematology and Oncology	Poland
LARSSON Stella	Clinic Immunology and Transfusion Medicine	Sweden
LASSILA Riitta	Helsinki University Central Hospital	Finland
LOZANO Miguel	Hospital Clinic Provincial	Spain
MACLENNAN Sheila	NHS Blood and Transplant	United Kingdom
MANNUCCI Pier Mannuccio	Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico	Italy
MARQUARDT Conny	Novo Nordisk Health Care AG	Switzerland
MARTINIS Georges	University General Hospital of Alexandroupolis	Greece
MUELLER-BERGHAUS Jan	Paul-Ehrlich-Institut	Germany
NAUJOKAITE Alvyda	Ministry of Health	Lithuania

NI LOINGSIGH Sorcha	Irish Blood Transfusion Service	Ireland
O'MAHONY Brian	Irish Haemophilia Society, Ltd	Ireland
ODNOLETKOVA Irina	PPTA Europe AISBL	Belgium
PANZER Simon	Medical University Vienna	Austria
PARAMONOV Igor	Fsbis Kirov Scientific Research Institute of Haematology and Blood Transfusion	Russian Federation
PEYVANDI Flora	Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico	Italy
POLITIS Constantina	Hellenic Center for Disease Control and Prevention	Greece
POON Man-Chiu	University of Calgary Foothills Medical Centre	Canada
RAMAIOLA Ilaria	Grifols	Spain
RAPAILLE Andre	Croix-Rouge de Belgique	Belgium
RASOVIC Gordana	Institute for Blood Transfusion of Montenegro	Montenegro
RAUTMANN Guy	EDQM	France
RAZBORSEK Irena	Blood Transfusion Centre of Slovenia	Slovenia
REBULLA Paolo	Fondazione Ospedale Maggiore Policlinico, Mangiagalli E Regina Elena	Italy
REHACEK Vit	Fakultni Nemocnice Hradec Kralove	Czech Republic
REICHERT Anja	Baxalta Deutschland GmbH	Germany
ROBERT Patrick	The Marketing Research Bureau, Inc	U.S.A
ROSENDAAL Frits	Leiden University Medical Center	The Netherlands
ROSSI Francoise	IPFA	The Netherlands
ROZANOVA Olga	Federal Medical Biological Agency	Russian Federation
SANTONI Bruno	PPTA Europe	Belgium
SAVIN Evgeny	Masterplasma LLC	Russian Federation
SAVINI Laura	European Haemophilia Consortium	Belgium
SCHOPOHL Dorothee	University Hospital of Munich	Germany
SCHRAMM Wolfgang	Abt.F. Transfusionsmedizin U.Haemostaseologie Klinikum der Universitaet Muenchen	Germany
SCHUETTRUMPF Joerg	Biotest AG	Germany
SEIFRIED Erhard	DRK-Blutspendedienst Baden-Wurttemberg-Hessen gemeinnutzige GmbH	Germany
SEITZ Rainer	Paul-Ehrlich-Institut	Germany
SERBAN Margit	Clinical Emergency Children's Hospital Louis Turcanu	Romania
SEVOYAN Anna	Hematology Center after R.H. Yeolyan	Armenia
STAHL Dorothea	Paul-Ehrlich-Institut	Germany
STIJELJA-JOVANOVIC Dragan	EDQM	France
STRAUSS-PATKO Maja	Croatian Institute of Transfusion Medicine	Croatia

STRBAC Nina	Blood Transfusion Institute of Serbia	Serbia
STREIF Werner	Medical University Innsbruck	Austria
TRIPKOVIC Nikola	Novo Nordisk Healthcare GmbH	Switzerland
VAN KRAAIJ Marian	Sanquin Blood Supply	The Netherlands
VARIK Mirja	North Estonia Medical Centre	Estonia
VASILJEVIC Nada	Ministry of Health	Serbia
VUCINIC Svetlana	Institute for Blood Transfusion of Montenegro	Montenegro
WIERER Michael	EDQM	France
WIKMAN Agneta	Karolinska University Hospital	Sweden
YENICESU Idil	Gazi University, Pedriatric Hematology Department	Turkey
ZACHARI Eleni	EDQM	France

Presentations

	The Kreuth initia	ative
	Title	Topics addressed
Kreuth I 1999	Optimal Use of blood components and plasma derived medicinal products	Red cells, platelets, FFP, albumin, clotting factor concentrates and haemophili treatment
Kreuth II 2009	Optimal Use of blood components: quality and best practices in haemotherapy	Red cells, platelets, FFP, albumin, clotting factor concentrates and haemophili treatment
Kreuth III 2014	Optimal Use of Clotting Factors and Immunoglobulins	Human normal immunoglobulins, clotting factors for treatment of haemophilia (VIII, IX, new)
	Paul-Ehrlich-Institut 📚	

LMU	PEI	EDQM
Prof. W. Schramm	Prof. R. Seitz	Dr. M.E. Behr-Gros
Dr. K. Berger	Dr. A. Hilger	Dr. K.H. Buchheit
	PD Dr. Dorothea Stahl	Dr. M. Wierer
Test		
	nical Organi D.Stijelja-Jovanovic, Ms. E.	sation

00.	gnated Orphan MP	for naemo	philla A
#	Product	Sponsor	Date
1	Pegylated rh FVIIa	Novo Nordisc	4/6/2008
2	Liposomal rh FVIII	Bayer Pharma AG	24/7/2009 (withdrawn)
3	Sequence-modified rhFVIIa	Bayer Pharma AG	9 October 2009
4	Recombinant porcine factor VIII (B domain deleted)	Inspiration Biopharmaceuticals	20 September 2010
5	Recombinant fusion protein FVIII attached to Fc of IgG1	Biogen Idec	20 September 2010
6	Pegylated rh BDD sequence-modified FVIII	Bayer Pharma AG	23 February 2011
7	Recombinant fusion protein FVIIa with albumin	CSL Behring	15 April 2011
8	Pegylated rH FVIII	Novo Nordisk	26 April 2012
9	Vatreptacog alfa (activated)	Novo Nordisk	9 August 2012
10	Hum. moAb TFPI	Novo Nordisk	10 October 2012
11	Hum. bispecific moAb targeting F IX, IXa, X and Xa	Chugai Pharma Europe Ltd	16 January 2014
12	Synth. siRNA against antithrombin mRNA + ligand with 3 N-acetylgalactosamine	Alnylam UK Limited	29 July 2014
13	rh FVIIa modified (repeats from $\boldsymbol{\beta}$ chain of human chorionic gonadotropin)	Richardson Associates Regulatory Affairs	22 August 2014
14	A combination of peptides (H-Lys-Lys-Gly-Pro-Arg]	Apitope International NV	19 November 2014

Quality Indicators for Monitoring the Clinical Use of Blood

EUROPEAN SYMPOSIUM IV Wildbad Kreuth Initiative - Optimal use of clotting factors and platelets 6-7 May 2016, Freising, Germany

C. Politis, Greece

Introduction

 The importance of quality management system (QMS) in transfusion medicine is well established, however the development of appropriate quality indicators (QIs) as a tool for quality monitoring and improvement has only recently begun to receive attention in this field

Agenda

- General information on QIs in transfusion Definitions – Classification – Characteristics
- Council of Europe, EDQM CDPTS
 - ✓ QIs for monitoring the clinical use of blood in Europe Enquiry - Evaluation of 2012 data
 - ✓ Use of blood components, 2013 data
- IHN/ISTARE data on clinical use of blood components, 2014

General Information I

Definition of QIs

 Qls are measurable, objective indicators of the efficiency of the key segments of a system

Vuk T. Blood Transf. 2010:8(suppl.1)

- QIs are one of the tools of a QMS used to monitor and control process functioning, whereby the data collected provide a basis for the implementation of corrective measures and continuous improvement
- Conformity with a set quality standards and goals has to be demonstrated by measurement

ISO 9001 Standard

General Information II

Characteristics of QIs

- Measurability
- Importance and relevance
- Potential for use
- Reliability (each QI should have clean numerator and denominator)
- Validity (*Ql should be adequately related to the problem monitored*)
- Uniformity of data collection
- Other attributes

General Information IV

Implementation of Qis: Objectives

One of the purposes of measurement is for monitoring
 In the case of the clinical use of blood, monitoring is a key
 ingredient of a quality system, also essential for harmonizing
 transfusion practices within and between countries

Indicators may contribute towards providing a general picture of the factors that influence the use of blood components and alternatives

 They allow trend analysis of various aspects of clinical practice and benchmarking

Finally, they may facilitate assessing the effectiveness of transfusion in terms of its outcomes, not only under optimal circumstances but also in emergencies and crises

Council of Europe- EDQM project 2010-2014 Inquiry into QIs for monitoring the clinical use of blood

Objectives

- To identify and develop a set of commonly accepted performance QIs for monitoring the clinical use of blood and blood components in Europe, in accordance with R (2002) 11 on the Hospital's and clinician's roles in the optimal use of blood and blood products;
- To use these indicators as a tool for benchmarking purposes and to improve consistency and uniformity in the reporting of annual data on the clinical use of blood at local, regional, national and international levels;
- To add a chapter to the Guide on "Monitoring the clinical use of blood with focus on efficacy versus outcome of transfusion: annual performance indicators"

The Chronicle

- Proposal to CD-P-TS November 2010
- Execution of the pilot study

Establishing a Working Group

Members: Vincenzo de Angelis (Italy), Alina Dobrota (Romania), Olivier Garraud (France), Tomislav Vuk (Croatia), Fatima Nascimento (Portugal), Jana Rososchova (Slovak R), Harald Schennach (Austria)

Project leader: Constantina Politis (Greece)

- Collecting data from 8 countries (Austria, Croatia, France, Greece, Italy, Portugal, Romania, Slovakia) for year 2010 or 2009
- Analysis of data performed by Cl. Richardson, Pantion University, Greece

Enquiry into Quality Indicators for monitoring the clinical use of blood

Based on

- the Recommendation (2002) 11
- 1999 and 2009 Kreuth initiatives for optimal use of blood
- EU's "Manual of Optimal Blood Use"
- other international work

Structure of the inquiry

- General information and National Policy for clinical use of blood
 - Implementation of Annual performance indicators of use of blood based on Rec(2002)11
- Evaluation of use of blood at local (hospital) level
 - Benchmarking between institutions by selected pathologies
- Specific quality indicators of transfusion practice based on EU's "Manual of Optimal Blood Use"
- Indicators of monitoring the efficacy versus outcome of the transfusion including economic parameters

Section A.

General information and National Policy for clinical use of blood

- Respondent Information Country
- National Policy
 - structure,
 - national regulations,
 - guidelines
- Quality standards and maintenance of records
- Haemovigilance and inspections for the clinical use of blood
- Information on Quality Management Systems for monitoring clinical performance in hospitals

Section B.

Implementation of annual performance indicators of use of blood and blood products based on the Rec(2002)11 of the Council of Europe

- Evaluation of use of blood at national /regional level
 - No. of units transfused per 1000 inhabitants and per no. of beds
 - Total Blood components issued/transfused
 - Transfused FFP/RBCs
- Evaluation of use of blood at local (hospital) level
- Special blood components transfused
 - Recovered Platelets /Aphaeresis Platelets
 - Untreated FFP/Pathogen Inactivated FFP
 - Untreated platelets /Pathogen Inactivated platelets
 - Irradiated blood components/Total blood components

Section B. Evaluation of use of blood at local (hospital) level

- Admitted patients/ Beds
- Total blood components transfused/ Distributed
- Total blood components transfused/prescribed
- Total blood components transfused/ Transfused patients
- Total blood components transfused per clinical department/
 No. of units of total blood components transfused in hospital
- Total blood components transfused per patient, by clinical department

Section B. Benchmarking between institutions by selected pathologies

Selected Pathologies

- Total hip replacement
- TTP
- Coronary by-pass, with 2-3 grafts
- Massive blood loss

Rates (examples)

- Mean units of RBCs used per patient with total hip replacement at institutional level
- Mean units of FFP used per patient with TTP at institutional level
- Mean units of total blood components used per patient in coronary by-pass with 2-3 grafts at institutional level
- Mean units of total blood components used per patient with massive blood loss at institutional level

Institutions

- General hospital
- University hospital
- Specialised hospital

Section C.

Specific quality indicators of transfusion practice based on EU's "Manual of Optimal Blood Use"

- Prescription
- Ordering and wastage
- Request forms
- Patient sampling
- Compatibility testing and traceability
- Other indicators

This section is designed for local use only

Section D.

Indicators of monitoring the efficacy versus outcome of the transfusion including economic parameters

National or hospital data including research findings, if available Assessment of efficacy/ outcomes of transfusion

Parameter of success

- Laboratory parameters
- Outcome in terms of morbidity
- Outcomes in terms of mortality
- Outcomes in terms of time
- Outcomes in terms of disease groups

Cost-effectiveness, cost-benefit analysis, cost-recovery evaluation Other indicators

Conclusions II

- The inquiry into QIs was promising
- The response rate was not as high as had been hoped: one factor is the difficulty of collecting some of the quantitative data by approaching one or more hospitals separately
- CD-P-TS has suggested that the building up of a network of contact points is required for regular collection of validated data on blood usage and future projections

EDQM CD-P-TS, 2013 data Use of Blood Components in 32 MS (Median values)

RBC 35 units: 1000 inhabitants (range 4-64)

Ratio $\frac{FFP}{RBC}$: 0.4 (range 0.03 - 1.5 median 0.31) 1:3

 $\frac{Whole Blood Derived Platelets}{Apheresis Platelets} = \frac{64}{36} \% 1.8 (0.0-85\% \text{ median 34\%})$

- Plasma for fractionation (29 MS) Average yield 9.1 lt : 1000 inhabitants (range 0-54 L) 71% recovered plasma (range 11-100% median 72%)
- Human albumin (17 MS)

Average use = 5088 kg (range= 0.0 - 35,379 kg, median 1,139 kg)

- Manufactured albumin (13 MS) iv administration 75% (range 0.0-1005, median 87%)
- Factor VIII (17 MS) Average use =34 x106 IU (range= 0-249 IU, median 4.0)
- Polyvalent Immunoglobulins

Average use = 3,295 kg(range 0.0-28,048, median 700kg)

Comments I

- Variation of RBCs per 1000 inhabitants may reflect the results of insufficient blood supply or limited hospital care. Programmes for "optimal use of blood" has been recently installed in order to reduce unnecessary donor exposure to patient
- For the same blood safety reason the use of aphaeresis platelets in relation to recovered platelets is relatively high in some countries.
- CD-P-TS is suggesting that a better benchmark maybe achieved by including the number of hospital beds linking to blood component use

Comments II

- The Hospital transfusion Committee should adopt procedures for regular transfusion auditing. In the case of significant deviations from the guidelines, corrective actions should be put in place.
- Patient blood management (PBM) programmes should provide best clinical care. Blood services and all BEs stakeholders should be involved in PBM programmes

Product	Technology	Half-lfe t _{1/2}	Estimated time to 1% after 50IU/kg
BAY94-9027	Site-directed PEGylation		~5 days
N8-GP	Site-directed glycoPEGylation		6,5 days
BAX855 (Adynovate)	Controlled PEGulation	1.4–1.6 fold	4 days
rFVIII-Fc (Eloctate, Elocta)	Fc-fusion		4,9 days

Product	Dose (IU/kg)	Treatment regimen	Median ABR, bleeds·patient ⁻¹ ·year ⁻¹	Patients with <u>n</u> bleeding episod %
ng-acting rFVIII Pro	ducts			
BAY94-9027	45–60 IU/kg	every 5 days	1,9	44
DA194-9027	60 IU/kg	every 7 days	3,9	37
rFVIII-Fc	25–65 IU/kg	every 3 - 5 days	1,6	45,3
(Eloctate)	65 IU/kg	every 7 days	3,6	17,4
BAX 855 (Adynovate)	45 IU/kg	2xweek	1,9	39,6

Patients treated with **rFVIII** longer acting on weekly prophylaxis experienced <u>a high ABR</u> in comparison to prophylaxis regimen every 3-5 days and this treatment regimen did not provide adequate prophylaxis

(Powell et al. N Engl J Med 2013;369:2313-23 ; Powell J et al. Haemophilia 2014;20;(Suppl.3):187; Mahlangu et al. Blood 2014;123:317-325); Konkle BA et al. Blood 2015;126:1078-1085)

Flora Peyvandi

rFIX extended half-life					
Product	Technology	Half-lfe t _{1/2}	Estimated time to 1% after 50IU/kg		
N9-GP	Site-directed glycoPEGylation	3-5 fold	22 days		
rFIX-Fc (Alprolix)	Fc-fusion		10 days		
rlX-FP (Idelvion)	Albumin-fusion		1-2 weeks		

	cal trials of e		
Product	Status	Pediatric trials	PUPs trials
rFVIII Products			
BAY94-9027	Phase III completed	Ongoing	//
N8-GP	Phase III completed	Active, not recruiting	Ongoing
BAX855 (Adynovate)	Approved by FDA at 2015	Completed	Ongoing
rFVIIIFc (Eloctate)	Approved by FDA at 2014 Approved by EMA at 2015	Completed	Ongoing
rFIX Products			
N9-GP	Phase III completed	Active, not recruiting	Ongoing
rFIXFc (Alprolix)	Approved by FDA at 2014	Completed	Ongoing
rIX-FP (Idelvion)	Approved by FDA at 2016	Completed	Ongoing

Novel rFVIIa products					
Fc-fusion	Albumin-fusion	CTP-fusion			
Fusion of the Fc domain of	Fusion of the human	Fusion of the C terminus peptide of			
human IgG	albumine	human chorionic gonadotropin (hCG)			
rFVIIa					
rFVIIa-FC	rVIIa-FP	Factor VIIa-CTP			
		-D -2			
		A Carrier of Carrier o			

	Novel rFVIIa products						
	Product	Half-lfe t _{1/2}	Somministration				
	rFVIIa-Fc	5,5 fold (in mice)	Intravenous				
	rFVIIa-FP (CSL689)	3- to 4-fold	Intravenous				
	rFVIIa-CTP	3-fold	Intravenous and subcutaneous injection				
Flora Peyvandi							

Produc	t Technology	Half-life	Somministration				
Inhibition of n	atural anticoagulants						
Concizum (NN7415	anti-TFPI Antibody	once weekly	Intravenous and subcutaneous injection				
ALN-AT: (Fitusirar		once weekly or montly	Subcutaneous injections				
Promotion of	thrombin generation by	mimicking the co	factor activity of FVIII				
ACE910 (Emicizum		once weekly	Subcutaneous injections				

Product	Status	Patients enrolled
Inhibition of natural	anticoagulants	
Concizumab (NN7415)	Phase I Ongoing (NCT02490787)	Hemophilia A and B
ALN-AT3 (Fitusiran)	Phase I/II Ongoing (NCT02554773)	Hemophilia A and B Hemophilia patients with inhibitor
Promotion of throm	bin generation by mim	nicking the cofactor activity of FVII
ACE910 (Emicizumab)	Phase III Ongoing (NCT02622321)	Hemophilia A Hemophilia patients with inhibitor

EUROPEAN SYMPOSIUM IV Wildbad Kreuth Initiative - Optimal use of clotting factors and platelets 6-7 May 2016, Freising, Germany

CURRENT CHALLENGES USING PLATELET CONCENTRATES

Professor Jean-Pierre Cazenave, MD, PhD

ARMESA Strasbourg, France

Transfusion of platelet concentrates (PC): a never ending challenge

- 1950's: platelet transfusions reduce mortality from hemorrhage in patients with acute leukemia
- Increase use: essential part of treatment of cancer, hematological malignancies, bone marrow failure, stem cell transplantation
- Problems: type of PC, risks for donors and patients, limited resources
- Introduction of new technologies: bacterial detection, pathogen inactivation
- Hemovigilance
- Consensus conferences and guidelines: safety and efficacy
- Regulatory approval by national agencies
- Costs

Pathogen inactivation (PI) of blood components A change of paradigm (Toronto Consensus Conference 2007*)

Active surveillance cannot forsee the risk of an emerging pathogen transmitted by transfusion. This type of risk needs a proactive approach according to the principle of precaution

- 1. PI implementation for 100% of blood components
- 2. PI implementation should not wait its availability for all 3 blood components (platelets, plasma, RBC)
- 3. PI should be implemented when safe methods of inactivation for large spectrum of pathogens are available
- 4. Use of PI should be universal for all patients

* Webert KE, Cserti CM, Hannon J, Lin Y, Pavenski K, Pendergrast JM, Blajchman MA. Proceedings of a Consensus Conference: pathogen inactivation-making decisions about new technologies. Transfusion Medicine Reviews, 2008, 22, 1-34.

Hemovigilance objectives relative to introduction of a new technology (Toronto Consensus Conference 2007)

- Monitor safety of PC in routine use
- Monitor safety in broad patient populations
- Monitor safety in special populations
 - Pediatric patients
 - Infants and neonates
 - Rare congenital disorders
- Detect low frequency adverse events that cannot be studied in clinical trials

Indications to transfuse PC:a complex decision

- Increasing use of PC: medicine, pediatrics and neonatology, surgery, obstetrics
- Many etiologies: thrombocytopenia (central or peripheral), thrombopathia
- Clinical bleeding is a therapeutic indication
- Prophylactic indication: risk factors modulate transfusion threshold
- Reduce risks to PC transfusion: infections, immune reactions (including refractoriness), TRALI
- Type of PC: single donor or pooled standard buffycoat, pathogen inactivated (amotosalen,riboflavin, UVC), donor profile
- Prescription: over- or under-use, availability, cost

What type of platelet concentrate are we talking about?

- Donor profile: male or female; HLA-, HPA-, HNA- matched; single or pooled
- Processing methods to prepare PCs: PRP (USA), buffycoat (Europe), apheresis
- Modifications: leucoreduction, additive solution, bacterial detection (1 or 2 tests), pathogen inactivation
- Storage: 3-5-7 days, temperature, agitation, transport
- QC: platelet concentration and content/PC, swirling, in vitro function
- In vivo: platelet recovery and survival, CCI, bleeding grade

Difficulties in assessing the clinical efficacy and safety of platelet concentrates

- It might be good to remember the history of transfusion medicine: progress by trial and errors, new technologies, clinical observation, clinical trials, evidence based medicine, hemovigilance
- Are apheresis PC or buffycoat PC equivalent?: apheresis machines different (microaggregates, swirling), anticoagulants, degree of leucoreduction, PAS
- How to evaluate efficacy?: surrogate markers and/or bleeding grade
- Is safety for donors or patients equivalent for both types of PC?
- Clinical trials face complexity in transfusion medicine: many evolutive diseases with various primary treatments (radiations, chemotherapy, antiplatelet agents...)
- Evaluation of cost, a necessity but not an obsession: albumine, delay in implementation

Indications of PC in adult and pediatric patients with central thrombocytopenia are more frequent

- Increased frequency: hematological malignancies, solid tumors, aplasia, SCT, chemotherapy
- Usual posologies (France 2015): 0.5-0.7 x 10¹¹/10 kg body weight
- Posology for neonates: 0.1-0.2 x 10¹¹/kg body weight (15-20mL/kg)
- Therapeutic transfusion of PC: when clinical bleeding
- Prophylactic transfusion of PC: when risks factors of bleeding
- Transfusion threshold: 10 G/L (stable patients), 20, 50 G/L

A MAJOR QUESTION: PROPHYLAXIS OR PLATELETS ON DEMAND

Relationship of CI, CCI to Grade 2 Bleeding and transfusion interval							
	N	Dose	1 Hr Cl	1 Hr CCI	Interval	Grade 2 (%)	
PLADO-Low	417	2.0	10	10.0	1.1	58	
PLADOMedium	423	4.0	19	10.0	1.9	59	
PLADO-High	432	8.0	38	11.0	2.9	60	
SPRINT- IA ¹	318	3.7	21	11.1	1.9	59	
SPRINT-C ²	327	4.0	34	16.0	2.4	58	
EUROSP-IA ¹	52	3.9	28	13.1	3.0	73 ³	
EUROSP-C	51	4.3	35	14.9	3.4	69 ³	
HOVON-IA ¹	87	3.4	20	11.4	2.5	7	
HOVON-C ²	99	3.9	34	17.1	3.4	Group	
¹ Plasma inactivated ² Plasma Control ³ Grade 1 and 2 blee			bleeding				

Quantitative aspects of pathogen inactivation in platelet concentrates and plasma transfused to patients in Alsace (2006-2014)

Intercept components transfused in Alsace		Components (n)	Patients (n)
PC-IA (20/07/2006-31/07/2014)	Total	140,990	20,921 - 404 newborns - 823 children - 19,694 adults
	BCPC-IA	89,954	
	APC-IA	51,036	
FFP-IA (03/09/2007-31/07/2014)	Total Units (200 mL/unit)	124,724	17,960 - 658 newborns - 786 children - 16,516 adults
	Pools for plasma exchange therapy	3,753 (corresponding to 33,046 units of 200mL)	3219 children312 adults

					cept-PC			`
			Conventional-	PC			Intercept- P	с
Year	PC (n)	TTBI (Grade 1-4)	TTBI (Grade 3)	TTBI (Grade 4 death)	TTBI/10,000 PC	PC (n)	TTBI (1-4) (death)	TTBI/10,000 PC
2006	231,853	4	4	0	0.17	6,420	0 (0)	0

0.39

0.25

0.37

0.08

0.11

0.25

0.14

0.07

0.11

0.20

15,393

15.544

21,767

21,897

23,179

24,849

24,954

24,881

8.000

186,884*

0 (O)

0 (O)

0 (0)

0 (O)

0(0)

0 (0)

0(0)

0 (0)

0 (0)

0 (0)*

0

0

n

0

0

0

0

0

0

0

2

1

0

1

1

2

1

0

1

9

2007

2008

2009

2010

2012

2015

Total*

232,708

239,349

241,634

253,147

267,785

275,986

285,288

278,477

92.000

2,398,227*

9

6

9

2

3

7

4

2

1

47*

5

4

7

0

2

2

2

2

0

28

Frequency of Transfusion Transmitted Bacterial Infections (TTBI)

AFSSAPS/ANSM Hemovigilance and EFS Activity reports (2006-2014) (gravity 1-4, imputability 2 (ex 3) and 3 (ex 4). 9 deaths (7 LR-APC/2 LR-BCPC conventional PC). *Fischer's exact test, two-sided : p-value: 0.048. relative Risk = 7.3 with Confidence Interval lower bound = 0.7.

Emerging Chikungunya and dengue in France

- 1. Pathogen inactivation of PC and plasma by Intercept was introduced in 2006-2007 for all patients transfused in Ile de la Réunion, Martinique, Guadeloupe and Guyane during an epidemic of Chikungunya and dengue
- 2. Epidemic of Chikungunya in the French carribean islands starting in February 2014
- 3. Number of clinical cases June 15, 2014: Saint Martin (3430), Saint Barthélémy (620), Martinique (37600), Guadeloupe (40400), Guyane (390)
- 4. Hémovigilance at EFS-Martinique and Guadeloupe-Guyane: CHIKV NAT since February 24, 2014 in addition to 28 days of exclusion of previous CHIKV infection, 72 h quarantine for RBCC, pathogen inactivation by Intercept of all platelets (PC-IA) and plasma
- 5. Information post donation at EFS-Martinique and Guadeloupe: 10 PC-IA (8 APC-IA an 2 BCPC-IA) coming from CHIV viremic donnors were transfused to 10 patients. No infection was detected in these patients
- Surveillance of Chikungunya and dengue in metropolitan France (summer 2014): all the prerequisites for autochthonous transmission of Chikungunya are present: extension of *Aedes albopictus* in Southern France (up to Alsace), large number of travelers returning from French Carribean Islands (408 cases of CHIKV and 150 cases of DENV confirmed by laboratory)
- 10/20/2014: 4 autochthonous cases of dengue fever in Southern France
 5 autochthonous cases of chikungunya in Montpellier/ Southern France

Zika virus epidemy, a public healh emergency of international concern (WHO, February 1st 2016)

- Areas with active Aedes mosquito-borne transmission of ZIKA virus: Africa (1951-1981), Thailand, French Polynesia (2013), Brazil-Mexico-French Carribean Islands-Puerto Rico (2015-2016) and many imported cases (France, USA...)
- 80% ZIKV infections remain asymptomatic
- Clinical symptoms: self-limiting, similar to flu-illness, chikungunya or dengue, severe complications: Guillain-Barré syndrome, microcephaly, long term complications
- Viremia may last up to 14 days and beyond
- Transmission: intrauterine, perinatal, sexual, transfusion blood component
- Reservoir of ZIKV: central nervous system, semen
- Recommendations for blood donation: deferral (4weeks), RT-PCR; women and pregnant women
- Pathogen inactivation: plasma (SD, amotosalen), platelets (amotosalen), red blood cells (IND authorization for S-303)

« WHAT IS THE NEXT NEW VIRUS? », THE STORY GOES ON! Proactive or passive surveillance

MERCI DE VOTRE ATTENTION THANK YOU FOR YOUR ATTENTION

Conflict of interest disclosure of Jean-Pierre Cazenave

Cerus Corporation (The Netherlands)

Co-Investigator of clinical trials Honoraria for presentations Research contracts

FDA CPMP COMP PDCO CAT PRAC 1896 1906 1995 1999 2000 2004 2007 2009 2012 CAT: Committee for Advanced Therapies, Image: CPMP/CHMP: Committee for Medicinal Products for Human Use, PRAC: Pharmacovigilance Risk Assessment Committee PDCO: Paediatric Committee PRAC: Pharmacovigilance Risk Assessment Committee		ŀ	listory		*
CAT: Committee for Advanced Therapies, CPMP/CHMP: Committee for Medicinal Products for Human Use, PRAC: Pharmacovigilance Risk Assessment Committee PDCO: Paediatric Committee PRAC: Pharmacovigilance Risk Assessment Committee					
COMP: Committee for Orphan Medicinal Products Paul-Ehrlich-Institut 3	CAT: Committee for A CPMP/CHMP: Comm PRAC: Pharmacovig PDCO: Paediatric Co PRAC: Pharmacovig COMP: Committee for	Advanced Therap nittee for Medicir ilance Risk Asse ommittee ilance Risk Asse	bies, nal Products fo ssment Comm ssment Comm	r Human Use, iittee	

-			Outco	me category	
		All-cause mortality	Serious (or severe) symptoms (or late complications) and adverse events	Health-selated quality of life	Non-serious (or non-severe, symptoms (or late complications) and adverse events
Extent category	Major sustained and great improvement in the therapy-relevant benefit, which has not previously been achieved versus the appropriate comparator therapy	Major increase in survival time	Long-term freedom or extensive avoidance	Major improvement	Not applicable
	Considerable marked improvement in the therapy- relevant benefit, which has not previously been achieved versus the appropriate comparator therapy	Moderate increase in survival time	Alleviation or relevant avoidance	Important improvement	Important avoidance
	Minor moderate and not only marginal improvement in the therapy-relevant benefit, which has not previously been achieved versus the appropriate comparator therapy	Any increase in survival time	Any reduction	Relevant improvement	Relevant avoidance

Parameter	Measurement			
	ivieasurement			
frequency, localisation, severity	patient survey, patient diary			
4 or more bleeds in one joint within 6 months*	patient survey, patient diary			
mobility, function, joint replacement, arthrodesis	Clinical joint status, Haemophilia Joint Hea Score (HJHS), WFH Physical Examination Sc (Gilbert Score), Arnold-Hilgartner System, Petterson Score, Magnetic Resonance Imag (MRI) Score, ultrasound			
fracture	patient survey, patient record			
hepatitis, HIV, clotting factor concentrates used	laboratory values, patient survey, patient record			
duration and intensity of treatment, gene mutations, clotting factor concentrates used	patient survey, patient record			
cause of death	death certificate, patient record			
*Valentino LA. Haemophilia (2009), 15 (Suppl. 2), 5-22.				
	within 6 months* mobility, function, joint replacement, arthrodesis fracture hepatitis, HIV, clotting factor concentrates used duration and intensity of treatment, gene mutations, clotting factor concentrates used cause of death			

Patient Reported Outcomes	Parameter	Measurement
Disease-specific quality of life	Example: Haemophilia-QoL 36 items/9 Scales: physical health, daily activities, joint damage, pain, treatment satisfaction, treatment difficulties, emotional functioning, mental health, relationship and social activities ¹	Haemophilia-QoL (adults an children), Haemo-QoL-A, Haem-A-QoL, Children Haemophilia Outcome (CHC Kids Assessment Tool (KLAT)
Health-related quality of life	Example: Euro-QoL-5D-questionnaire with 5 dimensions: mobility, self-care, usual activities, pain/discomfort, anxiety/depression ²	EQ-5D, SF-36, SF-12
Activity	FISH (8 activities: eating, grooming, dressing, chair transfer, squatting, walking, step climbing, running ³) or HAL (7 domains ⁴)	Functional Independence Score (FISH), Haemophilia Activities List (HAL; PedHAL)
Social integration	education, work, days absent, hospital stays	patient survey
Adherence and compliance	continuous treatment according to therapeutic guidelines	patient survey, patient diary

Which outcomes are feasible to be determined in
clinical routine care and meet access requirements?

GTH

Measurement	Prioritization			
	un-important	moderately important	important	very important
patient survey, patient diary			1	13
patient survey, patient diary				14
clinical joint status, Haemophilia Joint Health Score (HJHS), WFH Physical Examination Score (Gilbert Score)			6	8
radiological joint status (Petterson Score)		8	2	1
Magnetic Resonance Imaging (MRI)		5		
ultrasound	2	4	3	
patient survey, patient record	9	1	2	
laboratory values, patient survey, patient record			2	10
patient survey, patient record				14
death certificate, patient record				14
	patient survey, patient diary patient survey, patient diary clinical joint status, Haemophilia Joint Health Score (HHS), WFH Physical Examination Score (Gilbert Score) radiological joint status (Petterson Score) Magnetic Resonance Imaging (MRI) ultrasound patient survey, patient record laboratory values, patient survey, patient record	patient survey, patient diary patient survey, patient diary clinical joint status, Haemophilia Joint Health Score (HHS), WFH Physical Examination Score (Gilbert Score) radiological joint status (Petterson Score) Magnetic Resonance Imaging (MRI) ultrasound 2 patient survey, patient record 9 laboratory values, patient survey, patient survey, patient record patient survey, patient record	un-importantimportantpatient survey, patient diarypatient survey, patient diaryclinical joint status,Haemophilia Joint Health Score(HJHS), WFH Physical ExaminationScore (Gilbert Score)radiological joint status (Petterson Score)8Magnetic Resonance Imaging (MRI)5ultrasound2patient survey, patient record9patient survey, patient record9patient survey, patient recordpatient survey, patient record	un-importantimportantimportantpatient survey, patient diary11patient survey, patient diary11clinical joint status, Haemophilia Joint Health Score (HJHS), WFH Physical Examination Score (Gilbert Score)6radiological joint status (Petterson Score)82Magnetic Resonance Imaging (MRI)51ultrasound243patient survey, patient record912laboratory values, patient survey, patient record222patient survey, patient record912patient survey, patient record911patient survey, patient record911

Status of the implementation of EDQM 2013 recommendations

	NHC	Min 3 IU/capita FVIII	Prophylaxis in children	Prophylaxis for adults when required
Implemented in	18 countries	18 countries	33 countries	31 countries
Not implemented in	19 countries	8 countries	4 countries	6 countries
No data for	8 countries	19 countries	8 countries	8 countries
Brian O Mahony 2016				

Since 1996 GL	Since 2012 GL	Comment
requirements	requirements	
50 PTP > 12y (incl. 12	50 PTP > 12y (incl. 12	No change
PTP for PK and 5 PTP	PTP for PK and 5 PTP	
for surgery)	for surgery)	
20 children < 6y , to	50 children 0-12y	Paediatric Regulation
be started before		/ PIP
MA		
PUP CT not required	50 PUP for novel	Inhibitor review
	products	2005
	100 PUP follow up	PIP
Dest sutherisation.	200 nationto to ho	labilitan naviaw
Post-authorisation:	200 patients to be	Inhibitor review
	followed for 100 ED	2005
No specific		
No specific requirements	-specific testing schedule	

Inhibitor development in PUPs - SIPPET and previous studies -

F.R. Rosendaal Leiden University Medical Center

IV Wildbad Kreuth Initiative Optimal use of clotting factors and platelets Freising, 6 May 2016

Disclosures	
interest	

FVIII product and inhibitors			
Previously untreated patients			
cryoprecipitate	6.2%		
early concentrates	9.0%		
ultrapure concentrates	>25%		
Previously treated patients			
FVIII CPS-SD	4.4/1000 py		
FVIII CPS-P	20.1/1000 py		
(Peerlinck, Blood 1993; Guérois, Thromb H	laemost 1995; Gouw, Blood 2007; Vermylen,		
Acta Clin Belg 1991; Rosendaal, Blood 1993	3; Gouw N Engl J Med 2013)		

Replication: four studies					
	design	period	countries	N*	adjustment
RODIN FCN UKHCDO	cohort cohort cohort	2000-2010 1993-2014 2000-2011	14 1 1	574 353 407	mutation, age, + mutation, age, + mutation, age, +
EUHASS	case-series	2008-2012	26	417	none
<i>(</i> 0)					
(Gouw, N Engl J Med 2013; Calvez, Blood 2014; Collins, Blood 2014; Fischer, Thromb Haemost 2015)					

Confounding

- the main problem of observational studies
 mnemonic: grey hair and death risk
- a main cause is the physician: confounding by indication
- when the physician cannot know any risk factor: no confounding
 idiosyncratic side-effect of drugs
- when all risk factors known: adjustment
 - and reasoning over direction of effect
- when likelihood of subtle unknown or unmeasurable factors
 - confounding remains, unless influence physician removed
 - this is done by randomisation

Assumption SIPPET

- differential rate of inhibitors by product is a class effect
- due to presence of VWF in pdFVIII
- Note:
 - neither assumption necessary for the study

Baseline characteristics							
	pdFVIII	rFVIII					
	n=125	n=126					
median age (mo.)	14.0	15.0					
null mutation	86.3%	81.4%					
family history haemophilia	47.6%	42.6%					
family history inhibitor	11.5%	10.1%					
previous treatment	44.8%	42.1%					
treatment regimen							
on-demand	48.8%	44.4%					
standard pophylaxis	16.8%	15.1%					
modified prophylaxis	34.3%	40.5%					
Inhib	Inhibitor occurrence						
--------------------------	----------------------	-----------------	--	--	--	--	--
	pdFVIII n=125	rFVIII n=126					
all high-titre	29 20	47 30					
persistent peak titre	74.4%	72.2%					
peak (median) range	12 0.8-1100	16 0.7-1850					

Consequences

- scenarios -

- ignore
- ask for more studies
- treat all PUPs with pdFVIII
- treat first with pdFVIII, then switch to rFVIII
- differentiate
 - low risk rFVIII
 - high risk pdFVIII, or pdFVIII and then switch to rFVIII

Acknowle	edgments
Flora PeyvandiFier Mannucci	 local investigators DMSB Syntesi Research Patients and parents
SPONSORS OF THE STUDY FONDAZIONE ANGELO BIANCHI BONOMI Pe to andre v le inner de under de under de under maarte mentagene Ministero della Salute	UNRESTRICTED GRANTS Grifols, Spain Kedrion Biopharma, Italy LFB, France

EURC	OPEAN SYMPOSIUM
	e - Optimal use of clotting factors and platelets ay 2016, Freising, Germany
	e for Hervé CHAMBOST lated to this presentation)
Shareholder	No relevant conflicts of interest to declare
Grant / Research Support	CSL Behring, LFB, NovoNordisk
Consultant	Baxalta, Bayer Healthcare, CSL Behring, NovoNordisk
Employee	No relevant conflicts of interest to declare
Paid Instructor	No relevant conflicts of interest to declare
Speaker bureau	No relevant conflicts of interest to declare
Clinical trials (PI)	Bayer Healthcare, Biogen, CSL Behring, NovoNordisk, Octapharma

Inhibitors							
Inhibitor history (recorded at the	last follow-u	p in the	whole cohort			
Type / Severity	Patients (n)	Inh + (n)	(%)	High Response (n)*			
Haemophilia A	5813	595		359			
Severe	1963	472	24.0	300 (64%)			
Moderate	831	60	7.2	27			
Mild	3019	63	2.1	32			
Haemophilia B	1299	15					
Severe	403	14	3.5	11			
Moderate	365	1	0.3	-			
	531	0	0	_			

Randomized comparison of prophylaxis and on-demand regimens with FEIBA NF in the treatment of haemophilia A and B with inhibitors S. V. ANTUNES,* S. TANGADA,† O. STASYSHYN,† V. MAMONOV,5 J. PHILLIPS,¶ N. GUZMAN-BECERRA,† A. GRIGORIAN,† B. EWENSTEIN† and W.-Y. WONG† Haemophilia (2014), 20, 65-72 No. patients, age at start of prophylaxis, prestudy bleeding frequency Duration of BAP eterence/study design BAP dose Efficacy (range) 7; randomized control aPCC 85 ± 15 U/kg every 72.5% reduction in annual bleeding rate 12 mo 36 trial comparing 12 mo 7-56 y other day of aPCC prophylaxis with ≥12 bleeds in 12 mo before 12 mo of on-demand study enrollment therapy 25 23 20 15 P = 0.027110 7 5.9 5 0 0 Median ABRs of new target joint bleeding episodes Number of new target joints On-demand Prophylaxis Fig. 3. New target joints and associated bleeding episodes.

Case 1 : 35y, sHA, HR inhibitor, 32 UB at 3y Challenged X times / FVIII Treated on demand with aPCC No ITI till 32y, severe bleeder phenotype High dose aPCC prophylaxis (< 48h) Additional infusions +++ of aPCC / bleeds

Severe arthropathy, target joints, disability and impaired quality of life despite hard constraints and highly costly treatment

Expertise by social insurance (3 times)

Overtreatment ? Unjustified TRT ?

Case 2 : 6y, sHA, HR inhibitor
8 BU at 1y, discovered after 7 CED, elbow haemarthrosis with poor response to FVIII Treatment / rFVIIa on demand Immediate start of ITI : peak 410 BU at10 days
Poor compliance, poor peripheral venous access Several complications: infections and mechanical dysfunction of the Central Venous Devices Frequent hematomas and hospitalisations Intermittent prophylaxis (rFVIIa) Partial response : stop ITI after 6 months (40 BU)
Not prepared and too early ITI ?

Driginal Bonn Protocol _R: 50-100 IU FVIII/kg body weight/d, every other day or 3 times per week HR: 100 IU FVIII/kg bw i.v. twice daily and FEIBA 50 IU /kg bw i.v. twice daily						
Modified Bonn P	Protocol					
HR: 100-150 IU FVIII/kg bw every 12 hours; according to the bleeding tendency						
concomitant treatment with FEIBA 50-100 IU/kg bw once or twice daily						
concomitant treat	ment with FEIBA 50)-100 IU/kg bv	w once or twice da	0		
concomitant treat)-100 IU/kg by		0		
concomitant treat	ment with FEIBA 50 Pre-ITI titer [BU] Median (range)	Ŭ	v once or twice da Time to complete success [mo]	aily		
concomitant treat Kreuz et al., Haemophilia 1995	Pre-ITI titer [BU]	Time to BU	Time to complete	aily Succeess rate		

Malmö Protocol

- Extracorporeal immune adsorption with Protein-A-columns on two consecutive days
- Cyclophosphamid (12-15 mg/kg bw i.v. for two days after start of ITI followed by 2-3 mg/kg bw for 5 days)
- Intravenous gammaglobulins (400 mg/kg bw for 5 days)
- Administration of FVIII concentrate at 8-12 hour intervals to maintain FVIII:C 40-100%
- Success rate 62.5% (10/16 pts)
- Duration of treatment 9-37 days

ITI Protocols							
Bonn protocol	Malmo protocol	van Creveld					
FVIII 100 U/kg BID	Immunoadsorption using protein A column	FVIII 25-50 IU/kg BID for 1-2 weeks					
FEIBA 100 U/kg BID	if inhibitor titer >10 BU/mL	then 25 IU/kg every other day					
	Cyclophosphamide 12-15 mg/kg IV daily x 2 days then 2-3 mg/kg PO daily x 8-10 days						
	FVIII is given to achieve a 40%-100% fVIII level followed by fVIII infusion every 8-12 hours to achieve 30%-80% level						
	IVIG 2.5-5 g IV immediately after the first fVIII infusion followed by 0.4 g/kg daily days 4-8						

V I Treat				blood
I use bypas d inhibitors		for prophyla	axis in pa	atients with hem
. Leissinger, ¹ Tamm	nuella Singleton,1 and I	Rebecca Kruse-Jarro	es ²	
s Northwest, Seattle, WA				d ² Washington Center for Bleeding (<i>Blood</i> . 2015;126(2):
Reference/study design	No. patients, age at start of prophylaxis, prestudy bleeding frequency	BAP dose	Duration of BAP (range)	Efficacy
55; prospective study with 3-mo lead-in on-demand period (control period) followed by randomization to 2 doses of if-Vila for a 3-mo treatment period	22 5.1-50.5 y ≈2 bleads/mo during 3-mo proprophylaxis period	rFVIIa 90 µg/kg per day or rFVIIa 270 µg/kg per day	3 mo	45% roduction in bleeding in patients teated with 90 μgkg per day 59% reduction in bleeding in patients treated with 270 μg/kg per day (not statistically significant compared with 90 μg/kg dose) Significantly fewer hospital admissions and absences from school/work during problytaxis
56; randomized crossover study of 6 mo of aPCC	26 2.8-62.8 y ≥6 bleeds requiring bypassing	aPCC 85 U/kg ± 15% on 3 nonconsecutive d/wk	6 mo	62% reduction in all bleeding events* 61% reduction in hemarthroses* 72% reduction in target joint bleeding*
prophylaxis followed by 6 mo of on-demand therapy or vice versa	therapy in 6 mo before study enrollment			Significantly tewer absences from school/work during prophylaxis*

	Procurement method:						
Tenc	ler (19)	Alterna	itive (17)	Both (2)			
Albania	Poland	Austria	Kyrgyzstan	Bulgaria			
Azerbaijan	Portugal	Belgium	Latvia	Lithuania			
Belarus	Romania	Croatia	Netherlands				
Bosnia & Herzegovina	Russia	Estonia	Norway				
Czech Republic	Serbia	Finland	Spain				
Denmark	Slovak Republic	France	Sweden				
Hungary	Slovenia	Germany	Switzerland				
Ireland	Ukraine	Greece	Turkey				
Moldova	United Kingdom	Italy					
Montenegro							

Products tendered for: 18/19 tendered for plasma derived FVIII 13 tendered for plasma derived FVIII/VWF 16 tendered for recombinant FVIII 17 tendered for plasma derived FIX 8 tendered for recombinant FIX 11 tendered for bypassing agents 11 tendered for PCC's 7 tendered for products for rare bleeding disorders

- Not involved in 13

Mai	n repre	sentat	ives on	tender bo	EHC:
Health Insurance funds	Medicines agencies or pharmacies	Hospitals or blood centres	Ministries of Health	Clinicians or Haemophilia Centres	Patient Organisation
	Involv	ed in all a	aspects of t	the process	
Bosnia& Herzegovina	Denmark	Albania	Albania	Ireland	Ireland
Hungary	United Kingdom	Czech Republic	Azerbaijan	Denmark	Serbia
Montenegro,	Azerbaijan	Ireland	Belarus	Montenegro	
Serbia	Romania	Portugal	Ireland	Serbia	
Slovak Rep.	Belarus	Romania	Russia	United Kingdom	
Involve	d only in sc	<u>ientific ar</u>	nd technica	al aspects of the	e process
				Romania	Portugal
				Portugal	Slovenia
				Bosnia &	United
				Herzegovina	Kingdom
				Moldova	

Tender /Procur duration of terms of			
		N	Years
Term of office of the committee	Tender	9	2.3
term of onice of the committee	Alternative	3	1.5
Typical duration of the contract awarded	Tender	18	1.4
	Alternative	7	1.9

						EHC
						endoes vesuotike ootooon
		Tend	er		Alternativ	e Process
	n	Median (€)	Range (€)	n	Median (€)	Range (€)
Recombinant FVIII*	12	0.56	0.28 -1.05	17	0.69	0.39 -1.06
Plasma-Derived FVIII	15	0.40	0.16 -1.16	16	0.64	0.18 - 0.90
Recombinant FIX	6	0.73		12	0.72	
Plasma-Derived FIX*	15	0.40	0.18 -0.83	17	0.54	0.38 -0.88

		QUESTIONS					
		Excellent	Good	Average	Poor	Very Poor	N/A
1	How would you rate the Customer Service provided by the supplier?				х		
2	How would you rate the handling of complaints by the supplier?			х			
3	How would you rate your local representative?	х					
4	How would you rate the support you receive from your local representative?	x					
5	How would you rate timeliness of deliveries?					х	
6	How would you rate the accuracy of the deliveries?			х			
7	How would you rate order fulfilment?				х		
8	How would you rate the invoicing process?			x			
9	How would you rate the value added services offered by the supplier?			х			
10	How would you rate the supplier's overall performance?				х		
	At	DITIONAL QUES	TION				
		Excellent	Good	Average	Poor	Very Poor	N/A
11	How would you rate your homecare delivery supplier?		х				

Portuguese Association of Hemophilia denounces economic criteria in the treatment of disease

"This way, health of people with haemophilia has become dependent on cheaper products and not necessarily the most effective and safe products. On the other hand, medical experts in haemophilia who should be the a very important voice in the scientific and medical choice of these products have been relegated to a completely secondary role in the choice of therapies that will be administered to their patients."

Press release, APH, World Haemophilia Day 2015

Plasma-derived (Units x 000) Annual Growth Rate	891					2011	2014	Growth
Annual Growth Rate		838	960	948	1,352	1,684	1,911	
		-2.0%	4.7%	-0.4%	12.6%	7.6%	4.3%	4.3%
Recombinant (Units x 000)	322	655	788	1,402	1,882	2,206	2,701	
Annual Growth Rate		26.7%	6.3%	21.2%	10.3%	5.4%	7.0%	12.59
Plasma-derived+Recombinant Annual Growth Rate	1,213	1,493 <i>7.2%</i>	1,748 <i>5.4%</i>	2,350 <i>10.4%</i>	3,234 <i>11.2%</i>	3,889 <i>6.3%</i>	4,612 <i>5.8%</i>	7.79
From 1996 to 2014, the const an annual rate of 7.7%. From 2008 onward, the annua declined because the number During the period 1996 – 201	' al growth r of <u>new</u> p	rates of bo patients go	oth plasma ing on pro	a-derived a phylaxis s	and recom hrank yea	nbinant fac ir after yea	tor VIII ar.	

202 283 344 8.0% 11.9% 6.7% 3.49 191 224 260 6.5% 5.5% 5.0% 14.69 392 507 604 7.2% 8.9% 6.0% 6.79
191 224 260 6.5% 5.5% 5.0% 14.69 392 507 604
6.5% 5.5% 5.0% 14.63 392 507 604
6.5% 5.5% 5.0% 14.6% 392 507 604
392 507 604
hippont factor IX wont up at
nan rFVIII (14.6% vs. 12.5%).
X declined because the
r.
, , , , , , , , , , , , , , , , , , ,

		on Pr		of Hemophil	lia Patients 2 - United St	ates			
		UITI				acco			
				ntage of Pat					
Type of	February	September	April	April	March	March	January	January	January
Prophylaxis	2012	2010	2008	2007	2006	2005	2004	2003	2002
ermanent	33.1%	30.9%	13.2%	12.4%	12.1%	8.8%	13.2%	7.9%	7.3%
emporary	16.6%	15.8%	17.8%	17.3%	15.9%	16.4%	14.4%	14.6%	13.1%
otal	49.7%	46.7%	31.0%	29.7%	27.9%	25.2%	27.6%	22.5%	20.4%
		states the						om 20%	of
		tates the nd B patie						om 20%	of
hemop In 201	ohilia A a 4, 63% c	nd B patie	ents in 2 ere and i	002 to al	most 50% e hemopl	% in 201: hilia A pa	2.		of
hemop In 201	ohilia A a 4, 63% c	nd B patie	ents in 2 ere and i	002 to al	most 50% e hemopl	% in 201: hilia A pa	2.		of

					oruary		Feb. '13		bruary					
		Type of			013		vs. Feb. 'l	_	2012					
		Treatment rFVIII				Patients	-	ercent	Change	_	ercent			
				62		8.9%	7.0%		51.9%					
	Alphanate				18 20.0%		-7.0% 27	27.0%						
	Humate P			7		7.8%	-1.7%		9.5%					
	Koate DVI			1		1.1%	-0.5%		1.6%					
	Wilate			2		2.2%	2.2%		0.0%					
	Total ITI	Patients		90	10	0.0%		1	00.0%					
			N					ients						
						April	April			January	January	January		
												2002		
												Percent 25.3%		
												0.5%		
FEIBA	43	23.4%				29.0%	29.1%			34.9%	37.8%	37.8%		
Novoseven	51	27.7%	39.5%	5 31.	6%	31.8%	31.9%	34.6%	33.2%	29.5%	29.0%	29.4%		
Autoplex T		0.0%	0.0%			0.0%	0.0%	0.0%	0.8%	5.4%		6.9%		
Sub-Total	174	94.6%	95.3%	5 100	.0%	100.0%	100.0%	100.0%	5 100.0%	100.0%	100.0%	99.8%		
	Novoseven	Alphana Humate Koate D Wilate Total ITI Type of 20 Treatment Patients Immune Tol. 80 PCC 0 FEIBA 43 Novoseven 51 Autoplex T 0	Alphanate Humate P Koate DVI Wilate Total ITI Patients Treatment Percent Immue Tol. 80 43.5% PCC 0 0.0% FEIBA 43 22.4% Novoseven 51 27.7% Autoplex 0 0.0%	Alphanate Humate P Koate DVI Wilate Total ITI Patients ITeatment Patients Percent Immune Tol. 80 43.5% PCC 0.0% FEIBA 43 23.4% Novoseven 51 0.0% 0.0% 0.0%	Alphanate 18 Humate P 7 Koate DVI 1 Wilate 2 Total ITI Patients 90 Mode of Tr Type of 2013 Treatment Percent PCC 0 00% PCD 00% 32,3% Novseven 51 27,7% 39,5% Novseven 51 0,0% 0.0%	Alphanate 18 2 Humate P 7 7 Koate DVI 1 1 Wilate 2 2 Total ITI Patients 90 11 Mode of Treatment Percent Percent Immune Tol. 80 43.5% 23.5% 39.0% FEIBA 43 23.4% 32.3% 29.4% Novoseven 51 27.7% 39.5% 31.6% Autopicx 0 0.0% 0.0% 0.0% 0.0%	Alphanate 18 20.0% Humate P 7 7.8% Koate DVI 1 1.1% Wilate 2 2.2% Total ITI Patients 90 100.0% Mode of Treatments for Hemwith Inhibitors - 20 Type of 2013 2012 2010 200 Treatment Patients Percent Percent Percent Percent Immune Tol. 80 43.5% 23.5% 39.0% 39.2% 90.0% FEBA 43 23.4% 32.3% 29.4% 20.9% Novoseven 51 27.7% 39.5% 31.6% 31.8% Novoseven 51 0.0% 0.0% 0.0% 0.0% 0.0%	Alphanate 18 20.0% -7.0% Humate P 7 7.8% -1.7% Koate DVI 1 1.1% -0.5% Wilate 2 2.2% 2.2% Total ITI Patients 90 100.0% - Mode of Treatments for Hemophilia A Pat with Inhibitors - 2002 to 2013 Type of Treatment Percent Percent	Alphanate 18 20.0% -7.0% 2 Humate P 7 7.8% -1.7% 7 Koate DVI 1 1.1% -0.5% 7 Wilate 2 2.2% 2.2% 7 Total ITI Patients 90 100.0% 1 1 Total ITI Patients 90 100.0% 1 1 Type of Teatments for Hemophilia A Patients with Inhibitors - 2002 to 2013 2010 2006 2007 2006 Treatment Patients Percent Percent </td <td>Alphanate 18 20.0% -7.0% 27.0% Humate P 7 7.8% -1.7% 9.5% Koate DVI 1 1.1% -0.5% 1.6% Wilate 2 2.2% 2.2% 0.0% Total ITI Patients 90 100.0% 100.0% Mode of Treatments for Hemophilia A Patients with Inhibitors - 2002 to 2013 Type of Treatment Petrcent Percent Percent</td> <td>Alphanate 18 20.0% -7.0% 27.0% Humate P 7 7.8% -1.7% 9.5% Koate DVI 1 1.1% -0.5% 1.6% Wilate 2 2.2% 2.2% 0.0% Total ITI Patients 90 100.0% 100.0% Mode of Treatments for Hemophilia A Patients with Inhibitors - 2002 to 2013 Type of Treatment Percent Percent</td> <td>Alphanate 18 20.0% -7.0% 27.0% Humate P 7 7.8% -1.7% 9.5% Koate DVI 1 1.1% -0.5% 1.6% Wilate 2 2.2% 2.0% 0.0% Total ITI Patients 90 100.0% 100.0% Mode of Treatments for Hemophilia A Patients with Inhibitors - 2002 to 2013 Type of Treatment February September 2012 April 2010 March January January Treatment Patients Percent 0.0%</td>	Alphanate 18 20.0% -7.0% 27.0% Humate P 7 7.8% -1.7% 9.5% Koate DVI 1 1.1% -0.5% 1.6% Wilate 2 2.2% 2.2% 0.0% Total ITI Patients 90 100.0% 100.0% Mode of Treatments for Hemophilia A Patients with Inhibitors - 2002 to 2013 Type of Treatment Petrcent Percent Percent	Alphanate 18 20.0% -7.0% 27.0% Humate P 7 7.8% -1.7% 9.5% Koate DVI 1 1.1% -0.5% 1.6% Wilate 2 2.2% 2.2% 0.0% Total ITI Patients 90 100.0% 100.0% Mode of Treatments for Hemophilia A Patients with Inhibitors - 2002 to 2013 Type of Treatment Percent Percent	Alphanate 18 20.0% -7.0% 27.0% Humate P 7 7.8% -1.7% 9.5% Koate DVI 1 1.1% -0.5% 1.6% Wilate 2 2.2% 2.0% 0.0% Total ITI Patients 90 100.0% 100.0% Mode of Treatments for Hemophilia A Patients with Inhibitors - 2002 to 2013 Type of Treatment February September 2012 April 2010 March January January Treatment Patients Percent 0.0%		

Current practice in platelet transfusion

Platelet transfusion Treatment of bleeding Prevention of bleeding

How to assess efficacy and safety?

Observational studies in transfusion medicine

• Question: Association of blood (platelet) transfusion and survival?

e.g. Coronary artery bypass graft (CABG) surgery

• Answer: Transfusion is associated with decreased survival

Hematology and Oncology patients Prophylactic platelet transfusion - threshold

Outcomes up to 30 days	Illustrative comparative risł	(s (95% CI)	Relative effect	Participants	Quality of evidence	
	Higher trigger 20 / 30 x 10 ⁹ /L	Lower trigger 10 x 10 ⁹ /L				
Patients with bleedings	177 per 1000	239 per 1000 (168 to 336)	RR 1.35 (0.95 to 1.9)	499 (3 studies)	low	
Patients with bleedings grade 3 or 4	82 per 1000	81 per 1000 (43 to 154)	RR 0.99 (0.52 to 1.88)	421 (2 studies)	low	
No of platelet transfusions		2.09 lower (3.2 to 0.99)		333 (2 studies)	low	
Mortality	75 per 1000	134 per 1000 (62 to 286)	RR 1.78 (0.83 to 3.81)	255 (1 study)	low	
Estcourt LJ et al., Co	chrane Database Syst	Rev 11:CD010983 (20	15)			

Hematology and Oncology patients Therapeutic-only vs prophylactic platelet transfusion

WHO Bleeding	Wandt e	et al. (12)		Stanworth e		
cale ^{*1}	prophylactic	therapeutic	p-value	prophylactic	therapeutic	p-value
All patients Grade 2 and higher Grade 3 Grade 4	65/343 (19)* ² 3 (1) 4 (1)	127/301 (42) 7 (2) 13 (5)	<0.001 ns 0.016	128/299 (43) 1 (<1) 0	151/301 (50) 4 (1) 2 (1)	0.04 ns ns
Autologous HSCT Grade 2 and higher Grade 3 Grade 4	8/98 (8) 0 0	29/103 (28) 1 (1) 0	0.0005	95/210 (45) 0 0	99/211 (47) 1 (0.5) 2 (1)	ns
Acute leukemia Grade 2 and higher Grade 3 Grade 4	57/245 (24) 3 (1) 4 (2)	98/198 (51) 6 (3) 13 (7)	<0.0001 ns 0.0095	33/89 (37) 1 (1) 0	52/90 (58) 3 (3) 0	<0.05 ns

** WHO Grade 2: mild bleeding (more than isolated petechiae); no erythrocyte transfusion required; WHO Grade 3: bleeding requiring red cell transfusion; WHO Grade 4: symptomatic retinal or CNS bleeding; any life-threatening or fatal bleeding
**² absolute numbers (%)
WHO, World Health Organization; ns, non-significant; HSCT, hematopoietic stem cell transplantation

Wandt et al., Dtsch Arztebl Int 111:809 (2014)

Hematology and Oncology patients Therapeutic-only vs prophylactic platelet transfusion

Outcomes up to 30 days	Illustrative comparative risł	<s (95%="" ci)<="" th=""><th>Relative effect (95% CI)</th><th>Participants (studies</th><th colspan="2">Quality of evidence</th></s>	Relative effect (95% CI)	Participants (studies	Quality of evidence	
	Prophylaxis No Prophylaxis					
Days with bleeding		0.5 higher (0.1 to 0.9)		599 (1 study)	moderate	
Patients with bleedings grade 3 or 4	3 per 1000	10 per 1000 3 to 71	RR 4.91 (0.86 to 28.12)	801 (2 studies)	low	
No of platelet transfusions		0.5 lower (0.63 to 0.37)		801 (2 studies)	moderate	
Crighton GL et al., C	ochrane Database Syst	t Rev 9:CD010981 (20	15)			

Platelet transfusion for patients with hypoproliferative Thrombocytopenia - Summary
Prophylactic platelet transfusions should be given (autologous HSCT?)
Threshold: ≤ 10 x 10⁹/L
The standard dose of platelet concentrates is appropriate

Platelet transfusion thresholds prior to insertion of central lines
Cochrane review: No RCT
Estcourt LJ et al., Cochrane Database Syst Rev 12:CD011771 (2015)

Surgical patients

Berséus O et al., Transfusion 53:114S (2013)

Conclusion

- Development of international standards for assessment and documentation of bleeding across transfusion trials
- Hypoproliferative thrombocytopenia and a no-prophylactic platelet transfusion strategy: patients perspective? Quality of life?
- Evidence based guidelines for platelet transfusion: Adherence to these guidelines?

	TRANSFUSION PRACTICE
	A randomized noninferiority crossover trial of corrected int increments and bleeding in thrombocytopenic hematolog patients receiving 2- to 5- versus 6- or 7-day–stored platelets
ſ	Sheila MacLennan, ¹ Kay Harding, ² Charlotte Llewelyn, ³ Louise Choo, ⁴ Lekha Bakrania, ³ Edwin Massey, ^{2,5} Simon Stanworth, ⁶ Kate Pendry, ^{7,8} and Lorna M. Williamson ⁹ BACKGROUND: Bacterial screening offers the
	possibility of extending platelet (PLT) storage to Day 7.
	We conducted a noninferiority, crossover trial comparing
	PLTs stored for 6 or 7 days versus 2 to 5 days.
	STUDY DESIGN AND METHODS: Stable hematology
	TALE AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS ADD ADDRESS ADDRESS ADDRES ADDRESS ADDRESS ADD ADDRESS ADDRESS ADD
	STUDY DESIGN AND METHODS: Stable hematology patients were allocated to receive blocks of 2- to 5- and 6-
	STUDY DESIGN AND METHODS: Stable hematology patients were allocated to receive blocks of 2- to 5- and 6- or 7-day PLTs in random order. The primary outcome was the proportion of successful transfusions during the first block, defined as a corrected count increment (CCI) of
	STUDY DESIGN AND METHODS: Stable hematology patients were allocated to receive blocks of 2- to 5- and 6- or 7-day PLTs in random order. The primary outcome was the proportion of successful transfusions during the first

			GRADING		
	0	T 0	2	3	4
MUCOCUTANEOUS		1 Anna Canada			1000
Epistaxis	None	< 1 hour in duration	≥ I hour duration	See footnote 1	See footnote 2
Oropharyngeal	None	<1 hour in duration	≥ 1 hour duration	See footnote 1	See footnote 2
Petechise pupurs (hemorrhage bleeding into skin or mucosa)	None	Petechise of skin or micosa, puppura < 1 inch in diameter. confluent purpura	Purpura > 1 inch in diameter, generalized petechise. purpura of skin	See footnote 1	See footnote 2
GASTROINTESTINAL					
Melena	None	N/A	Positive occult blood	See footnote 1	See footnote 2
Rectal bleeding / hematochezia (visible blood)	None	N/A	Positive occult blood	See footnote 1	See footnote 2
Covert GI bleeding (no visible blood; not black or tarry stools)	None	Positive occult blood	See melena / hematochezia	See footnote 1	See footnote 1
Hematemesis	None	N/A	Positive visual / occult blood	See footnote 1	See footnote 2
GENITOURINARY		A CONTRACTOR OF	and a start of the		
Hemsturia	None	Up to 1+ (dt.trace.small)	2+ (moderate) or greater	See footnote 1	See footnote 2
Vaginal bleeding, abnormal	Noge	Spotting, <2 saturated pads day	>2 saturated pads day	See footnote 1	See footnote 2
BRONCHO - PULMONARY Hemoptysis	Notie	N/A.	Positive	See footnote 1	See footnote 2
MUSCOLOSKELETAL & SOFT TISSUE	None	N/A	Spontaneous hematoma: joint bleeding	See footnote 1	Permanent debilitating change: See footnote 2
BODY CAVITY Pleural, peritoneal, perseardial, retropentoneal	None	N/A	Red cell on microscopic exam	Grossly bloody	See footnote 2
CENTRAL NERVOUS SYSTEM CNS bleeding / hemorihage	Notie	N/A	NA	Bleeding on CT w/o clinical consequences	Non fatal bleeding with neurological signs and symptoms
Retinal bleeding	None	Retinal bleeding w o visual impairment	N/A	N/A	Visual impairment, i.e. fiel deficit
INVASIVE SITES			Strate Barrier		
All	None	N/A	Any bleeding around catheter; bleeding at venipuncture sites	See footnote 1	See footnote 2

		HEMORR	HAGE/BLEEDING	G	P	age 4 of
		1		Grade		
Adverse Event	Short Name	1	2	3	4	-
NAVIGATION NOTE: VILLEDU	s hemorthage is graded in th	he OCULAR/VISUAL CATEGO	DRY.			_
Hemorrhage/Bleeding – Other (Specify,)	Hemorrhage – Other (Specify)	Mild without transfusion	Ĩ	Transfusion indicated	Catastrophic bleeding requiring major hon- elective intervention	Deal
Petechiae/purpura (hemorrhage/bleeding into skin or mucosa) ALSO CONSIDER: Fibrinoge	Petechiae n; INR (International Norma	Few petechiae	Moderate petechiae; purpura e); Platelets; PTT (Partial T	Generalized petechiae or purpura	-	-

Study	Grade ≥2	Score
SPRINT control ¹	63.6 %	WHO
SPRINT amatosalen ¹	62.6 %	WHO
SToP low dose ²	51.7 %	WHO
SToP standard dose ²	49.2 %	WHO
PLADO low dose ³	70.0 %	WHO
PLADO medium dose ³	68.0 %	WHO
PLADO high dose ³	70.0 %	WHO
HOVON control ⁴	19.0 %	CTCAE
HOVON PAS ⁴	15.0 %	CTCAE
HOVON amotosalen ⁴	32.0 %	CTCAE
IPTAS Intercept ⁵	23.0 %	WHO
IPTAS Intercept control ⁵	16.5 %	WHO

Safe Supplies: Testing the							logy Unit	
Age of platelets (days)	1	2	3	4	5	6	NK	total
All species	0	2	8	11	12		4	38
Staph. epidermidis		1		2	7	1		11
Bacillus cereus				4			1	5
Escherichia coli		1	1				1	3
Group B Streptococcus			1	1			1	3
Group G Streptococcus				2	1			3
Klebsiella pneumoniae			2	1				3
Staph. aureus				1	1		1	3

	Intercept	Mirasol	Theraflex
Regulatory classification	Class III	Class IIb	Class IIa for bag Class IIb for device
Pathogen reduction	Broad spectrum	Broad spectrum	Broad spectrum
Shelf-life	Up to 7 days in PAS and plasma	Up to 7 days in PAS Up to 5 days in plasma	Up to 5 days
Patient populations	No exclusions*	No exclusions	Not stated
Inactivation of leucocytes	Can replace gamma or x- irradiation	Can replace gamma or x- irradiation	Can replace gamma of irradiation
Inactivation of CMV	Can replace CMV sero- negative serology	Can replace CMV sero- negative serology	Not stated

	Intercept	Mirasol	Theraflex
Recovery and survival	Reduced by 16-20% d5 plasma	Reduced by 25- 27% d5 plasma	Reduced by 2 29% d5 SSP
Clinical studies	Eurosprite d5 CI	MIRACLE d5 CI	None
	SPRINT d5 bleeding		
	HOVON d7 CI		
	TESSI d6-7 CI		
Allergic reactions	↓Due to PAS?	?	Not known
HV data	Published, no issues raised	Limited	Not in use

Review

Improving platelet transfusion safety: biomedical and technical considerations

Blood Transfus DOI 10.2450/2015.0042-15 © SIMTI Servizi Srl

Olivier Garraud¹², Fabrice Cognasse²³, Jean-Daniel Tissot⁴, Patricia Chavarin³, Syria Laperche¹, Pascal Morel⁵, Jean-Jacques Lefrère^{1,6}, Bruno Pozzetto², Miguel Lozano⁷, Neil Blumberg⁸, Jean-Claude Osselaer⁴

¹National Institute of Blood Transfusion (INTS), Paris; ²GIMAP-EA3064, Faculty of Medicine of Saint-Etienne, University of Lyon, Saint-Etienne, France; ³Auvergne-Loire Blood Establishment, Saint-Etienne, France; ⁴Blood Transfusion Service of the Swiss Red Cross, Epalinges, Switzerland; ⁴Bourgogne Franche-Comté Blood Establishment, Besançon, France; ⁴Paris Descartes University, Paris, France; ⁷Department of Hemotherapy and Hemostasis, University Clinic Hospital, Barcelona, Spain; ⁴Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America

(Unofficial) Representatives from France – Switzerland – Spain (Catalonia) – USA – Belgium → Preference for BC-PCs over routine SDA-PCs

Neither consensual nor universal: In certain countries (Blood Establishments [BEs]) – such as in the Netherlands – BC-PCs are the most common PCs (SDA-PCs for immunization situations only, < 10%) while in other countries (such as Germany), there still is a preference of SDP-PCs vs pooled PCs. In the US, pools come essentially from Platelet Rich Plasma [PRP], but voices start to raise in favour of BCs (M Yazer and others).

_					Tableau 0	: Cession des PSL en 2014 par type	de exectuit
		_			Tableau 3		· · · · · · · · · · · · · · · · · · ·
			e de PS	iL*		Quantité	Pourcentage
		CG	R			2 445 524	78,64 %
		MC	PS			4 849	0,16 %
ansm		/ МС	PS-SC		BC-PCs	141 652	PAS 4,56 %
OUDITI	Rapport thématique	МС	PS-IA			14 753 Amotosale	en _{0.47 %}
		CP	Δ			7 085	0.23 %
			A-SC		SDA-PCs		PAS 4,03 %
			4-30 4- 1 A		SDA-PCS	11 923 Amotosale	en 0.38 %
			C-Se			107 850	3,47 %
		PF	C-IA			111 916	3,60 %
		PF	C-SD			135 336	4,36 %
		PL	(0			677	0.02 %
Rapport d'activité Hémovigilan	ce 2014	CG	Δ			88	<0.01 %
			R-AUTO			251	0.01 %
			al PSL			3 107 106	100 %
					irce · EES et CTSA		
Tableau 9 : Nombre et incidence des Elf	R déclarés d'imputabi			e de PSL,			
Tableau 9 : Nombre et incidence des Elf Diagnostic	R déclarés d'imputabi Nombre d'EIR	Taux de déc	laration po	e de PSL, ur 100 001	2014 PSL cédés		
Diagnostic	Nombre d'EIR	Taux de déc Tous PSL	laration po CGR	e de PSL, our 100 00 Plasma	2014) PSL cédés Plaquettes		
Diagnostic		Taux de déc	laration po	e de PSL, ur 100 001	2014 PSL cédés		60 h
Diagnostic Ilo-Immunisation isolée Ilergie	Nombre d'EIR 2 368	Taux de déc Tous PSL 76,21	CGR 87,21	e de PSL, our 100 00 Plasma 0,84	2014 DPSL cédés Plaquettes 75,62	It is however di	fficult to ascribe
Diagnostic Ile-immunisation isolée Ilergie éaction fébrile non hémolytique (RFNH)	Nombre d'EIR 2 368 802	Taux de déc Tous PSL 76,21 19,37	CGR 87,21 5,27	e de PSL, our 100 001 Plasma 0,84 32,89	2014 D PSL cédés Plaquettes 75,62 116,54		
Diagnostic Ile-Immunisation isolée Ilergie deciton (ébrte non hémolytique (RENH) edème pulmonaire de surcharge	Nombre d'EIR 2 366 602 595	Taux de déc Tous PSL 76,21 19,37 19,15	CGR 87,21 5,27 19,91	e de PSL, our 100 00 Plasma 0,84 32,89 0,84	2014 PPSL cédés Plaquettes 75,62 116,54 34,37		
Diagnostic Ilo-Immunisation isoble Itergio decision folfora non hémolytique (RFNH) edeme pulmonaire de sucharge compatibilité immunisógique	Nombre d'EIR 2 368 602 595 185	Taux de déc Tous PSL 76,21 19,37 19,15 5,95	CGR 87,21 5,27 19,91 7,11	e de PSL, pur 100 000 Plasma 0,84 32,89 0,84 1,12	2014 PSL cédés Paquettes 75,62 116,54 34,37 2,29	immunization to or	ne component only
Diagnostic Ilo-Immunisation isokke Ilerdin Vaecilion (Kerte non hömolytique (RENH)) dedime patrinonalie die surcharge compatibiliek immunologique dedicinto hypertensive	Nombre d'EIR 2 388 602 595 185 184 161 37	Taux de déc Tous PSL 76,21 19,37 19,15 5,95 5,92 5,18 1,19	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12	e de PSL, ur 100 000 Plasma 0,84 32,89 0,84 1,12 0 0,28 0	2014 PSL cédés Paquettos 75,62 116,54 34,37 2,29 31,10 2,82 11,13	immunization to or	
Diagnostic III-Immunisation Isole Itergia decision felden zon hörnöytique (RPN+1) edecision hörden zurcharge ecompatibilitär (immunicipajue decision hypertonsive dificacité translaukonne)	Nombre d'EIR 2 368 602 595 185 185 184 161 37 25	Taux de déc Tous PSL 76,21 19,37 19,15 5,95 5,92 5,18 1,19 0,80	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12 1,02	e de PSL, nur 100 00 Plasma 0,84 32,89 0,84 1,12 0 0,28 0 0,28 0 0	2014 PSL cédés Paquettes 75.62 1110.54 34.37 2.99 31.10 2.62 11.13 0	immunization to or as patients receivi	ne component only ng PCs usually also
Diagnostic lis-immunisation solde lisrgia edismis fatel on on hämelytsua (HFNH) edismis pathemasika edismin typestmaisive ediscin typestmaisive ediscin typestmaisive ediscination taratekunonete emaidatorae contente metabatoguaes	Nombre d'EIR 2 368 602 595 185 184 161 37 25 1	Taux de déc Tous PSL 76,21 19,37 19,15 5,95 5,92 5,18 1,19 0,80 0,03	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12 1,02 0,04	e de PSL, mur 100 000 Plasma 0,84 32,89 0,84 1,12 0 0,28 0 0 0 0 0 0 0 0 0 0 0 0 0	2014 PSL cédés Traçués 75,62 1116,54 34,37 2,29 31,10 2,29 31,10 0 0	immunization to or	ne component only ng PCs usually also
Diagnostic Ito-Immunisation isolale Itorgio edicine factoria no homoryktyja (RPNH) edicine factoria tanakasionale de succharge compatibilité immunicipius éxection hypertensilve ediciano hypertensi hypertensilve ediciano hypertens	Nombre d'EIR 2 368 602 595 185 184 161 37 25 1 20	Taux de déc Tous PSL 76,21 19,37 19,15 5,95 5,92 5,18 1,19 0,80 0,03 0,64	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12 1,02 0,04 0,45	e de PSL, uur 100 000 Plasma 0,84 32,89 0,84 1,12 0 0,28 0 0,28 0 0 0 0 0 0 0 0	2014 PPSL codes Pacuastics 75,62 116,54 34,37 2,29 11,10 2,62 11,13 0 0 0 2,95	immunization to or as patients receivi	ne component only ng PCs usually also
Diagnostic lis-immunisation isojõe lisraja asionis förte non häneyksus (KFNH) asionis förte non käneyksus (KFNH) asionis tille kaneyksus asionis hypetensilve alisticalte translusuonete amaidistos asionis hypetensilve aliselina hypetensilve	Nombre d'EIR 2 388 802 595 185 184 161 37 25 1 25 1 20 18	Taux de déc Tous PSL 76,21 19,37 19,15 5,95 5,92 5,18 1,19 0,80 0,03 0,64 0,58	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12 1,02 0,04 0,45 0,57	e de PSL, uur 100 000 Plasma 0,84 32,89 0,84 1,12 0 0,28 0 0,28 0 0 0 0 0 0 0 0 0 0 0	2014 PBL cides Prequettes 75.62 110,54 34.37 2.62 31,10 2.62 11,13 0 0 2.95 1.31	immunization to or as patients receivi	ne component only ng PCs usually also
Diagnostic Ilic-Immunitation isole Ilerge addons (Marte In Microlykigu (RPNH) dedons publicit Immunicigijus deadics hypernastie dedicis hypernasti	Nombre d'EIR 2 368 602 595 185 184 161 37 25 1 20	Taux de déc Tous PSL 76,21 19,37 19,15 5,95 5,92 5,18 1,19 0,80 0,03 0,64 0,35	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12 1,02 0,04 0,45 0,57 0,41	a de PSL, ur 100 00 Plasma 0,84 32,89 0,84 1,12 0 0,28 0 0 0 0 0 0 0 0 0 0 0 0 0	2014 PSU. cdds Requestion 75.62 110.54 34.37 2.93 31,10 2.62 11.13 0 0 2.95 1.31 0.33	immunization to or as patients receivi receive	ne component only ng PCs usually also RBCCs
Disprostic Lis-tronunisation isolate Lisrogia deciden fatter onn hömolytique (KFNH) deciden translandungsgue deciden typestensive directarist translassionete directarist translassionete directarist translassionete directarist translassionete directarist translassionete directarist translassionete directarist translassionete directarist directaristicationete directaristica	Nombre d'EIR 2 268 002 595 165 164 161 37 25 1 20 1 20 18 11	Taux de déc Tous PSL 76,21 19,37 19,15 5,95 5,92 5,18 1,19 0,80 0,03 0,64 0,58	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12 1,02 0,04 0,45 0,57	e de PSL, uur 100 000 Plasma 0,84 32,89 0,84 1,12 0 0,28 0 0,28 0 0 0 0 0 0 0 0 0 0 0	2014 PBL cides Prequettes 75.62 110,54 34.37 2.62 31,10 2.62 11,13 0 0 2.95 1.31	immunization to or as patients receivi receive Meanwhile, <u>allo-im</u>	ne component only ng PCs usually also RBCCs
Diagnostic III-Immunisation isole Iterge addons fidere on henophrage (RPNH) dedons particular de surcharge occopatibilie Immunicaçãous deados hoperansivo deados hoperansi hoperansivo d	Nombre d'ER 2 368 002 595 165 164 161 37 25 1 37 25 1 20 18 11 9	Toux de déc Tous PSL 76,21 19,37 19,15 5,96 5,96 5,96 5,96 5,96 5,96 5,96 5,9	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12 1,02 0,04 0,45 0,57 0,41 0,20	e de PSL, ur 100 00 Plasma 0,84 32,89 0,84 1,12 0 0,28 0 0 0 0 0 0 0 0 0 0 0 0 0	2014 PBL cdds PRsuettos 75.62 11054 34.37 34.37 34.10 2.62 31.10 0 0 0 0 2.99 1.31 0.35 0.65	immunization to or as patients receivi receive Meanwhile, <u>allo-im</u>	ne component only ng PCs usually also RBCCs
Disponsitio Ilio-timunitación leade Iliorgía decidin fátol nan hómojrique (KFNH) decidin translocajue decidin translocajue decidin translocajue decidin translocajue decidin translocajue decidin translocajue decidin translocajues decidin tran	Nombre d'ER 2 388 602 595 185 184 161 161 37 25 1 20 1 20 18 11 9 8 8	Taux de déc Tous PSL 76,21 19,37 19,15 5,95 5,92 5,18 1,19 0,60 0,64 0,58 0,29 0,26	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12 1,02 0,04 0,04 0,057 0,41 0,20 0,29	e de PSL, ur 100 000 Plasma 0,84 0,84 1,12 0 0,28 0 0 0 0 0 0 0 0 0 0 0 0 0	2014 PBL.Gdds PB2.Gdds 76.22 110.34 34.37 2.29 31.10 2.82 1.11.13 0 0 2.85 1.31 0.33 0.65 0.33	immunization to or as patients receivi receive	ne component only ng PCs usually also RBCCs
	Nombre d'ER 2 398 002 185 185 184 161 37 225 1 20 18 11 20 18 11 38 6	Tous de déc Tous PSL 76,21 19,37 19,15 5,95 5,92 5,18 1,19 0,80 0,03 0,64 0,58 0,35 0,26 0,26 0,19	aration po CGR 87,21 5,27 19,91 7,11 3,64 6,21 0,12 1,02 0,04 0,45 0,57 0,41 0,20 0,29 0,12	e de PSL, plasma 0,84 32,89 0,84 1,12 0 0,28 0 0 0 0 0 0 0 0 0 0 0 0 0	2014 PBL ddds Paguetta 75,82 2,9 31,10 2,25 11,13 0 0 2,26 1,31 0,33 0,35 0,36 0,33 0,36 0,36 0,36	immunization to or as patients receivi receive Meanwhile, <u>allo-im</u>	ne component only ng PCs usually also RBCCs

Gravité		Famille de PSL	_	То	otal
	CGR	Plaquettes	Plasma	Effectif	%
Grade 1	2 129	229	3	2 361	99,7 %
Grade 2	5	2	0	7	0,3 %
Total	2 134	231	3	2 368	100 %
Taux pour 100 000 unités cédées	87,8	76	0,8	73,9	
	RBCCs	PCs	_		
PCs (BC- and SDA-PCs) lead to respective		any allo-imn ber of issue		s than RBC	Cs,
	to the num	nber of issue ées déclarées	d BCs		
respective Tableau 13 : Répartition des allo-immun	to the num	hber of issue ées déclarées 2014	d BCs	té 2 à 3, selo	n l'anticorp
respective	to the num	nber of issue ées déclarées	d BCs	té 2 à 3, selo	
respective Tableau 13 : Répartition des allo-immun ype d'anticorps	to the num	hber of issue ées déclarées 2014 Effectif	d BCs	té 2 à 3, selo 98,i 0,0	n l'anticorr

Г

Anticorno onti d	déclarée d'imputabilité 2 à rythrocytaire non ABO	Effectif	%		
Anticorps anti- JK1	rythrocytaire non ABO	443	18,98 %		
RH3		400	17.14 %		
KEL1		355	15,21 %		
-Y1		257	11,01 %		
RH1		139	5,96 %		
U1 INS3		113 109	4,84 % 4,67 %		
K2		92	3,94 %		
RH4	Classical distribution	86	3,68 %		
EL3	Classical distribution	82	3,51 %		
RH2 RH8	of Abs to DDC Aguat	80 43	3,43 % 1.84 %		
INS1	of Abs to RBC AgH:1	36	1,54 %		
RH5	prevention policy in	20	0,86 %		
Y2	prevention policy in	15	0,64 %		
:H/RG1 E1	force	10 10	0,43 % 0,43 %		
INS4	TOTCE	10	0.43 %		
'1		6	0,26 %		
T2		5	0,21 %		
EL2 N1		3	0,13 % 0.13 %		
INS2		3	0.13 %		
T1		3	0,13 %		
13		2	0,09 %		
Y3 E2		2	0,09 % 0,09 %		
H6		2	0.09 %		
01		1	0,04 %		
U2		1	0,04 %		
e		1	0,04 %		
otal		2 334	100 %		
	Tableau 15 : Répartition des a		-érythrocytaires dans l'allo abilité 2 à 3, 2014	-immunisation is	olée déclaré
	Anticorps non anti-érythrocytaire			Effectif	%
		anti-class I	can originate	17	68,00 %
	HLA classe I			-	8,00 %
	HLA classe I HLA Cw1		-	2	0,00 %
		from either	-	2 2	8,00 %
	HLA Cw1		-		
	HLA Cw1 HLA non précise	from either	-	2	8,00 %
	HLA Cw1 HLA non précise HLA A2	from either	-	2	8,00 % 4,00 %
	HLA Cw1 HLA non précise HLA A2 HLA classe II	from either	-	2 1 1	8,00 % 4,00 % 4,00 %

on Leukoreduced -	Controls: untreated pooled random donor platelets	Leukoreduced pooled random donor platelets	Leukoreduced single-donor apheresis platelets
Number of patients	131	137	132
Alloimmunization Refractoriness Alloimmunization and refractoriness	45% 16% 13%	18% (P < 0.001)* 7% (P = 0.03)* 3% (P = 0.004)*	17% (P < 0.001)* 8% (P = 0.06)* 4% (P = 0.01)*
Adapted from refe			
		The Trial to Reduce A Group. Leukocyte red platelets to prevent all platelet transfusions. 7	uction and ultraviolet loimmunization and re

4_Publ immunizat			•)
	Pel	winder!			
leau 12 : Répartition des allo-imm		olées déclarée ravité, 2014	es d'imputa	bilité 2 à 3, s	selon le ty
			es d'imputa		selon le ty otal
leau 12 : Répartition des allo-imm Gravité		ravité, 2014	es d'imputa		
	PSL et la g	ravité, 2014 Famille de PSL	-	То	otal
Gravité	PSL et la g	ravité, 2014 <u>Famille de PSL</u> Plaquettes	Plasma	To	otal %
Gravité Grade 1	PSL et la g CGR 2 129	ravité, 2014 Famille de PSL Plaquettes 229	Plasma 3	To Effectif 2 361	otal % 99,7 %
Gravité Grade 1 Grade 2	PSL et la g CGR 2 129 5	ravité, 2014 Famille de PSI Plaquettes 229 2	Plasma 3 0	To Effectif 2 361 7	otal % 99,7 % 0,3 %

Parameter	Primary anti-D formers	All other recipients	P value	
Number of recipients (%)	7 (1-4)	478 (98.6)	NC	
Gender (Male/Female)	4/3	299/179	0.2	
Median age (range), years	60 (2-100)	65 (39-85)	0.2	
ABO group (O/A/B/AB)	3/3/1/0	206/212/43/17	0.9	
Main diagnosis (haematology- oncology/others)	3/4	264/214	0.5	
Iatrogenic immunosuppression (yes/no/unknown)	3/3/1	197/177/104	0.9	
History of pregnancy (yes/no)*	2/0	55/12	0.5	
Patient location: Europe/Americas	2/5	222/256	0.6	
Previous RBC transfusion (yes/no)	6/1	217/261	0.08	
Previous PC transfusion (yes/no)	2/5	94/384	0.9	
Transfused PCs (whole blood/ apheresis/both)	2/4/1	179/288/71	0.8	
Median length of serological follow-up (range), days	216 (32–368)	75 (28–2111)	0.09	

Table II. Type and quantity of the platelets transfused to the 485 recipients in this study.				
Platelet product type	D+ (<i>n</i>)	D- (<i>n</i>)	Total (n)	
Whole blood-derived platelets	1180	1505	2685	
Apheresis platelets	1970	694	2664	
Total number	3150	2199	5349	

Table IV. Number of platelet concentrate units administered to those who produced a primary anti-D and those who did not. Data are presented as median (range) unless otherwise specified.

Parameter	Primary anti-D formers	All other recipients	P value
Recipients, n (% of total)	7 (1.4)	478 (98.6)	NC
D+ PC	2 (1-31)	2 (1-115)	0.9
D- PC	0 (0-14)	0 (0-127)	0.5
Total PC	2 (1-37)	3 (1-157)	0.5

PC, platelet concentrate; NC, Not calculated.

	CreatMark Disponible on ligne su ScienceDirect www.sciencedirect.com	EM consulte TRANSFUSIO	
	ELSEVIER Transfusion Clin MASSON	ique et Biologique 21 (2014) 210-215	_
	III IBBOIT	Mise au point	
		ettaire et iso-immunisation anti-Rh1 : rêt de la séroprévention	
	Platelet transfusion and immi	nization anti-Rh1: Implication for immunoprophylaxis	
		H. Chambost ^{a,*,b}	
	^b Inserm, UMR_S 1062, faculté	ints La Timone, assistance publique des hipitaux de Marseille, 264, rue Saint-Pierre, 13385 Mars codes X. France de médiceite Timone, dais Marseille université, 13005 Marseille, France Disponible sur Internet le 2 octobre 2014	eille
Tableau 1 Risque d'allo-immunisation plaqu entre la première exposition transf Référence	tettaire anti-D en l'absence de séropro iusionnelle à des plaquettes Rh1 et le Taux d'anti-D	évention selon le terrain et la durée de suivi. La durée dernier dépistage sérologique à la recherche d'anticon Terrain, contexte	n semaines de suivi
Reference	Cas/patients (%)		Médiane (extrêmes)
Goldfinger et al., 1971 [23]	8/102 (7,8)	Traitement immunosuppresseur	36 (2–174)
		Immunodépression, oncologie	27 (2–182)
Baldwin et al., 1988 [24]	8/102 (7,8)	Immunodépression, oncologie Immunodépression	27 (2–182) 3 (2–12)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16]	8/102 (7,8) 9/49 (18,4)	Immunodépression, oncologie Immunodépression Immunodépression	27 (2–182) 3 (2–12) 27 (4–104)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a	8/102 (7,8) 9/49 (18,4) 3/16 (18,7)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie	27 (2–182) 3 (2–12) 27 (4–104) 8 (2–76)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie Maladies non hématologiques	27 (2–182) 3 (2–12) 27 (4–104) 8 (2–76) 38 (2–133)
Goldfinger et al., 1971 [23] Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a Atoyebi et al., 2000 [15] Molnar et al., 2002 [19]	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0) 0/24 (0)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie	27 (2–182) 3 (2–12) 27 (4–104) 8 (2–76) 38 (2–133)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a Atoyebi et al., 2000 [15]	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0) 0/24 (0) 8/59 (13,6)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie Maladies non hématologiques Onco-hématologie pédiatrique hors greffe	27 (2-182) 3 (2-12) 27 (4-104) 8 (2-76) 38 (2-133) e 27 (2-223)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a Atoyebi et al., 2000 [15]	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0) 0/24 (0) 8/59 (13,6) 0/35 (0)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie Maladies non hématologiques	27 (2–182) 3 (2–12) 27 (4–104) 8 (2–76) 38 (2–133)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a Atoyebi et al., 2000 [15]	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0) 0/24 (0) 8/59 (13,6) 0/35 (0) (490 transfusions)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie Maladies non hématologiques Onco-hématologie pédiatrique hors greffe	27 (2-182) 3 (2-12) 27 (4-104) 8 (2-76) 38 (2-133) 27 (2-223) 8 (6-11)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a Atoyebi et al., 2000 [15] Molnar et al., 2002 [19]	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0) 0/24 (0) 8/59 (13,6) 0/35 (0) (490 transfusions) 0/7 (0)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie Maladies non hématologiques Onco-hématologie pédiatrique hors greffe	27 (2-182) 3 (2-12) 27 (4-104) 8 (2-76) 38 (2-133) 27 (2-223) 8 (6-11) 8 (1-37)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a Atoyebi et al., 2000 [15] Molnar et al., 2002 [19] Cid et al., 2002 [21]	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0) 0/24 (0) 8/59 (13,6) 0/35 (0) (490 transfusions) 0/7 (0) (255 transfusions)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie Maladies non hématologiques Onco-hématologie pédiatrique hors greffe Greffes de CSH pédiatriques	27 (2-182) 3 (2-12) 27 (4-104) 8 (2-76) 38 (2-133) 27 (2-223) 8 (6-11) 8 (1-37) 24 (4-351)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a Atoyebi et al., 2000 [15] Molnar et al., 2002 [19] Cid et al., 2002 [21]	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0) 0/24 (0) 8/59 (13,6) 0/35 (0) (490 transfusions) 0/7 (0) (255 transfusions) 0/22 (0)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie Maladies non hématologiques Onco-hématologie pédiatrique hors greffe Greffes de CSH pédiatriques Hématologie (chimiothérapie +++)	$\begin{array}{c} 27 \ (2-182) \\ 3 \ (2-12) \\ 27 \ (4-104) \\ 8 \ (2-76) \\ 38 \ (2-73) \\ 27 \ (2-223) \\ 8 \ (6-11) \\ 8 \ (1-37) \\ 24 \ (4-351) \\ 54 \ (5-375) \end{array}$
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a Atoyebi et al., 2000 [15]	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0) 0/24 (0) 8/59 (13,6) 0/35 (0) (490 transfusions) 0/7 (0) (255 transfusions) 0/22 (0) 6/177 (3,4) 4/31 (12,9)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie Maladies non hématologiques Onco-hématologie pédiatrique hors greffe Greffes de CSH pédiatriques Hématologie (chimiothérapie +++) Hématologie	27 (2-182) 3 (2-12) 27 (4-104) 8 (2-76) 38 (2-133) 27 (2-223) 8 (6-11) 8 (1-37) 24 (4-351)
Baldwin et al., 1988 [24] McLeod et al., 1990 [16] Heim et al., 1992 [30] ^a Atoyebi et al., 2000 [15] Molnar et al., 2002 [19] Cid et al., 2002 [21]	8/102 (7,8) 9/49 (18,4) 3/16 (18,7) 0/37 (0) 0/24 (0) 8/59 (13,6) 0/35 (0) (490 transfusions) 0/7 (0) (255 transfusions) 0/22 (0) 6/177 (3,4)	Immunodépression, oncologie Immunodépression Immunodépression Hématologie Maladies non hématologiques Onco-hématologie pédiatrique hors greffe Greffes de CSH pédiatriques Hématologie (chimiothérapie +++) Hématologie Oncologie	$\begin{array}{c} 27 \ (2-182) \\ 3 \ (2-12) \\ 27 \ (4-104) \\ 8 \ (2-76) \\ 38 \ (2-133) \\ 27 \ (2-223) \\ 8 \ (6-11) \\ 8 \ (1-37) \\ 24 \ (4-351) \\ 54 \ (5-375) \end{array}$

Blood Transfus 2014; **12** Suppl 1: s147-8 DOI 10.2450/2013.0099-13

LETTER TO THE EDITOR

Red blood cell alloimmunisation after platelet transfusion: a 5-year study

Pierre Moncharmont, Gregory Barday, Francis Meyer

Department of Haemovigilance, Rhône-Alpes French Blood Service, Gerland, Lyon, France

 Table I Number and type of PLT concentrates released and type of products involved in the post-transfusion RBC alloimmunisations observed during the study.

Year	2007	2008	2009	2010	2011
Products released:					
Number of apheresis PC	15,135	14,906	15,666	14,762	13,506
(%)	(84.0)	(82.0)	(79.8)	(70.6)	(59.4)
Number of pooled PC	2,892	3,259	3,692	6,159	9,247
(%)	(16.0)	(18.0)	(20.2)	(29.4)	(40.6)
Type and number of products involved in the notified cases of RBC alloimmunisation:					
Apheresis PC	4	4	6	6	4
Pooled PC	1	1	7	7	8

PC: platelet concentrate; RBC: red blood cell.

1.3% allo-immunization to RBC Antigens

Anti-red blood cell antigen alloimmunization after platelet component transfusion: comparison of platelet sources

Considering this conflicting data, we thus aimed at revisiting the situation and we reviewed all PC transfusion episodes in a regional setting over the past five years. A total of 54,202 PCs were delivered to 17,135 patients from 2010 to 2014: 27,199 WBPCs and 27,003 APCs. The number of APCs that were collected in these regional facilities were 24,320 over those past five years. Over this period, three types of separators were used: 20,750 by TRIMA (TerumoBCT) [0.8532%], 2,300 by AMICUS (Fenwall/Fresenius-Kabi, Lake Zurich, IL) [0.0945%], and 1,270 by MCS+ (Haemonetics, Braintree, MA) [0.0522%]. Hemovigilance surveys were operated by medical officers in hospitals and reported electronically to the national regulatory authority. The hemovigilance policy was regional and, based on that characteristics and on the homogeneity of the PC production by only one serving center, it can be assumed that intergroup comparisons in our study is valid.

Olivier GARRAUD^{1,2}, Abdelhalim BENAMARA³, Vincent BOST³, Pascale ORIOL⁴, Christiane MOUNIER⁵, Sophie ACQUART³ ¹ EA3064 Faculty of Medicine of Saint-Etienne, University of Lyon, 42023 Saint-Etienne, France
Over 5 years, we recorded 25 and 10 RBC antigen alloimmunizations after WBPC and APC transfusions, respectively (p=0.015, by means of a corrected Khi² test; Odds ratio: 2.49). Details are given in **Table 1**. While being an exceptional event, alloimmunization to RBC antigens was more frequent after WBPCs compared to APCs. This study could not assess a bias in PC allocation in patients, pertaining that some patients may have more chances of getting immunized that others; however, there was no protocol in force in this region to assign BCs other than on parameters such as availability, ABO match and—eventually—age of the products. Thus, no patient category has received for example APCs in preference to WBBCs or vice-versa.

- SDA-PC RBC contamination: ≤0.5x 10⁶ residual RBCs
- BC-PCs: estimated at below or equal 10⁶ residual RBCs
- PRT Amotosalen: must be below 4x 10⁶ residual RBCs (visual estimation)
- However, •
 - This doesn't match with the pre-storage hypothesis (in process LKD)
- Is there a role for Microparticles? (experimentally more immunogenic than intact erythrocytes)??
- ??

doi:10.1111/trf.13505

© 2016 AABB

Karina Yazdanbakhsh, PhD¹ e-mail: kyazdanbakhsh@nybloodcenter.org Vijay Nandi, MPH² ¹Laboratory of Complement Biology ²Data Analytic Services New York Blood Center TRANSFUSION 2016;56;543-545 New York, NY

- 7. Refaai MA, Fialkow LB, Heal JM, et al. An association of ABO non-identical platelet and cryoprecipitate transfusions with altered red cell transfusion needs in surgical patients. Vox Sang 2011;101:55-60.
- 8. Henrichs KE Howk N. Masel DS. et al. Providing ABOidentical platelets and cryoprecipitate to (almost) all patients: approach, logistics, and associated decreases in transfusion reaction and red blood cell alloimmunization incidence. Transfusion 2012;52:635-40.
- 9. Triulzi DL Assmann SE Strauss RG, et al. The impact of platelet transfusion characteristics on posttransfusion platelet increments and clinical bleeding in patients with hypoproliferative thrombocytopenia. Blood 2012;119:5553-62
- 10. Kaufman RM, Assmann SF, Triulzi DJ, et al. Transfusionrelated adverse events in the plate et dose study Transfusion 2015;55:144-53.

ABO identity vs compatibility may reduce allo-immunization (along to the increase of platelet recovery) \rightarrow this information should be examined in more detail

5_Concluding remarks and paths for improvement?

- Allo-immunization linked to platelet transfusion is not frequent occurrence
 - Allo-immunization to HLA or HPA
 - Allo-immunization to RBC antigens
- BC- and SDA-PC seem equivalent regarding this risk
 - The ADAPT study
 - This can be mitigated if one considers anti-HLA immunization (BC-PC seem better)
 - ...if one considers anti-RBC Ag immunization (SDA-PC seem better)
 - Further studies needed to confirm

availability	/ for pat	lients						
		Collection			Utilization f	or transfusion		
	Total Donors	Donors/100	WB donations	Use of WB (U)	Use of RBC (U)	Use of Plasma	Use of Platelets (U)	Collection and us
Austria	334,066	inhabitants 28.17	(U) 472,206	301	425,537	(U) 74,420	37,245	of blood component
Belgium	365,813	33.7	549,266	0	516,035	92,761	69,328	across the EU (2010
Bulgaria	119,110	16.2	162,658 ^(a)	1,654	183,120	93,666	6,605	
Cyprus*	48,544	63.3	49,294	0	44,283	15,735	11,167	
Czech Republic	376,176	36.4	440,700	393	389,521	201,220	31,866	adapted from EDQM repor
Denmark	255,231	45.9	337,000	0	316,733	66,110	33,907	adapted norm EDQM repor
Estonia	44,805	33.4	58,729	19	51,586	27,196	6,086	
Finland	154,602	28.6	265,592	314	249,922	53,512	43,023	
France	2,125,786	32.7	2,483,577	0	2,378,241	382,449	278,097	
Germany	3,074,037	37.6	4,940,257	5,657	4,694,567	1,216,153	496,281	
Greece	533,015	50.8	613,275	49	615,692	201,909	133,375	
Hungary	322,735	32.3	418,794	0111	361,151***	93,987***	14,259 11	
Ireland	96,737	21,1	151,894	0	140,037	23,612	24,431	
Italy	1,722,503	28.5	2,694,871	3,025	2,522,355	395,602	205,791	
Latvia	50,361	25.2	55,702	0	52,017	36,758	6,131	
Lithuania	72,663	22.1	68,324	25	79,012	29,682	11,020	
Luxembourg*	10,367	21	22,105	0	20,272	4,410	2,315	
Malta	12,339	29.5	14,548	0	14,051	6,161	1,609	
Poland	703,561	18.4	1,179,668(4)	610(3)	1,095,838 ^[4]	369,474(1)	93,184(4)	
Portugal	293,571	27.8	414,268	116	336,421	10,990	66,428	
Romania	480,150	25.3	400,285	109,597	396,490	249,245	22,664	
Slovakia	120,319	22.2	205,246	957	186,978	87,690	16,023	
Slovenia	110,497(10)	53.9(*)	95,601(*)	0	87,451(*)	29,879 ⁽⁴⁾	10,944(*)	
Spain	1,133,040	24.7	1,740,091	140	1,618,419	200,583	192,332	
Sweden	245,289	26.1	493,439	0	488,373	89,064	42,817	
The Netherlands	352,083	21.1	542,160	519	548,793	81,742	56,165	Data provided by Competent Authority
United Kingdom	1,566,463	25.1	2,305,482	16	2,182,950	303,377	287,027	2009t data
Total	14,664,952	29.38	21,175,032	123,492	19,995,845	4,437,387	2,200,121	

_											
	Number of Whole blood donations	W8 collections/1000 inh	Number of Platelets Donations by Apheresis	Platelets apheresis Donations/10 20 inh	Other donations by apheresis		Col		of blood		
Austria	-			-	-			adapted	from Implen	nentation 9	
Belgium	538.336	48,5	13.471	1.2	6.078			adapted	mon impici	Ternation	501709 2010
Bulgaria	167.851	22,9	2.714	0,4							
Groatia	179.305	41,9	2.646	9.6	118	Lithuania	79.367	26,4	1.049	0,3	2.221(d)
Cyprus	57,847	67,1	272	0,3	261	Luxembourg	20.631	39,5	679	1,3	
Crech Republic	418.954	39,8	18.271(a)	1,7		Malta	16.995	40,7	469	1,1	
Denmark	293.765	52,6	1.232	0.2		The Netherlands	498.117	29,8	4.723	0,3	-
Estonia	5.812	4,4	105	0,1	804	Norwing	198.584	39,8	51.000	10,2	4.654
Finland	246.434	45,6	483	0,1		Pilland	1.173.050	30,4	34.133	0,9	600(e)
France	2.641.930	40,5	131.875	2,0	32.643(i)	Portugal	387.222	36,7	4.568	0,4	346
Germany	4.785.048	59,6	196.106	2.4	35.245(b)	Romania	399,848	19,9	6.630	0,3	1.037(f)
Greece	400.002(c)	35,9	18.123	16		Stovetcia	203.825	37,7	6.257	1,2	
Hungary	425.637	42,9	3.573	0.4	825	Slovenia Spain	91.099	45,3	2.343	1.1	125(g) 24.728(f)
Ineland	138.099	30,1	12.023	2.6		Sweden	484.755	50.7	0	0.0	24.728(7)
Italy	2.683.127	45,2	80.051	1,3	26.147	United Ringdom	2.256.736	35.3	148.012	2.3	ά
Liechtenstein	5	0.1	0	0.0		Total	20.502.708		752.349		135.832
Latvia	5.559	1.7	3.461	1.7		1000					

		g and us	e of Bloo	d and Bloo	d Compon	ents in Eu	rope, 2	012			
Table 3 Survey 2012					Use of blood and bloo	d components for tra	Instusion				
Country	Translused or distributed	whole blood (U)	% whole blood of total RBCs	red blood cell concentrates (U)	r.b.c. (U) per 1.000 inhabitants	plasma for transfusion (U)	platelets total (I)	platelets recovered (U)	platelets apheresis (U)	% platelets by apheresis	ryoprecipitate
Albania	0.00 10.000	107		conservation (of		0.0000000000000	tour ful	(contract (c)	- dimension for		is that they
Andorra Armenia	Trans.		0.0	11 294	3.8	11 087	2 159	2 127	32	1,5	7
Austria	mans.			11 - 694	70	11 001	2 132	e in	20	e(3	
Azerbaijan											
Belgium	Trans.	0	0.0	491 774	44,3	89.053	68.668	33 064	25 604	51,8	100 C
Bosnia / Herzegovina							1000				
Bulgaria Croatia	Oetr:	321	0.2	177 061	41,3	91 593	21 969	19 160	2 800	12,7	
Cyprus	0.00	321	0,2	177 061	41,3	91 593	21 999	19 160	2 800	12,1	
Czech Republic	Trans	654	0.2	393 804	37,4	187 000	37 100	9 200	27 900	15.2	
Denmark	Teans.	0	0.0	277 960	49.6	60 692	33 631	32 001	1 630	4.8	
Estoria	Teans.	45	0.1	55 162	41.7	25 993	6 985	5 712	1 273	18.2	8
Finland	Distr. Distr.	0	0.0	229 090 2 517 097	42.2 38.4	49 429 387 976	41 565 300 683	41 B85 154 955	480	9.2 48.5	
France FYR Macedonia	Delr.		0.0	2 517 007	38.4	387 976	300 683	154 955	145 728	46.5	
Georgia	Teners.	1 1									
Germany	Distr.	3 550	0.1	4 633 911	57.5	1 \$71 D68	589 179	226 457	362 722	61.6	
Greece	Deb.	0	0.0	413 568	39.4	193.872	129 807	115 897	13 910	10.7	
Hungary	Distr.	9	0.0	414 755	43.1	97 219	47 695	44 645	3 050	6.4	
keeland	Distr.	0	0.0	11 538	35.8	3 284	2 3 3 0	732	1 598	68,6	
ireland Italy	Distr.	1 469	0.0	135 357 2 564 093	29.4 43.2	21 240 432 884	24 971 219 785	5 117 145 334	73 451	79,5	11
Latvia	Trans. Dear	1 46/	0.0	2 564 003	43.2	432 888	219 785	145 334	13 451	33,4	29
Liechtenstein	17494	1	~~~	-	0.0			1.011	-	914	
Lithuania	Trans.	0	0.0	87 402	29.3	31 156	19 002	0.516	10 416	54.6	
Luxembourg	Distr.	0	9.0	19 889	\$7.0	4 100	2 765	1.904	861	31,1	
Malta							1.1				
Moldova	Distr.	160	0.4	39 100	11.5	63 041	8 309	509			13 1
Montenegro Netherlands	Trains- Disar	3 990	26.2	15 250	24,4 27,1	10 290 57 507	57 120	52 418	6 302	0.0	5
Norway	Trans.	132	0.1	191-431	37,9	49 733	24 508	16 911	7 697	31.0	
Poland		100		181.431		10.000	24.500			21,0	
Portugal	Trans.	133	0.0	341 976	32.6	6.578	38 942				
Romania		1.12				10000					
Russian Federation San Marino	Distr.	1 335	5.7	1 669 907	14,7	1 907 368	148 684				
San Manno Serbia				1.							
Slovakia	Distr.	420	0.2	169 805	35.1	86 679	15 033	2 748	12 285	61.7	
Slovenia				0.0001				1.1			
Spain	Trans.	95	0.0	1 553 720	33.8	198 521	185 510	158 356	30 154	18,0	1.5
Sweden	Trans.		(S. 194	460 837	48,2	182 893	48.523	40 788	7 735	15.9	
Switzerland Turkey	Destr.	(I		297 588	37.2	49 832	34 265	11 526	22 739	66.4	
Ukraine				and the second second	10 m - 1 m	C					
United Kingdom	Detr.	2	0.0	2 102 521	33.0	286 402	310 428	45 333	267 095	86.0	156.50

Estimated 2013 Collection and Trans Components (expressed in thousand		BB US Me	mber Bloo	d Centers	and Ho	spitals for	Non-R
	Blood Centers	Hospitals	2013 Combined Total	±95% Cl	2011 Total	% Change 2011-2013	p-value
Collection/Production	194.2	- 6.2	1.50	1.57	6.50	35	1111
Apheresis Platelets Collected and Produced	2,112	114	2,226	55	2,283	-2.5	0.078
Apheresis Platelets Distributed for Transfusion	1,908	94	2,002*	50	2,090	-4.2	0.015
WB-Derived Platelets Concentrates Distributed [†]	154	9	164(819)*	9	129(643)	27.1	<0.0001
Total Platelets Distributed for Transfusion	2,062	103	2,166	51	2,219	-2.4	0.249
Plasma Collected or Produced	3,995	283	4,278*	118	5,784	-26.0	<0.0001
Plasma Distributed for Transfusion	3,286	201	3,488*	76	4,495	-22.4	<0.0001
Gryoprecipitate Distributed for Transfusion*	1,218	117	1,335*	70	867	54.0	<0.0001
Transfusions							
Apheresis Platelets	0	1,143	1,143	104	1,019	12.2	0.112
WB-Derived Platelets Concentrates [†]	0	167	167(835)	53	116 (581)	30.7	0.142
Total Platelets Transfused	0	1,310	1,310*	121	1,135	15.4	0.0423
Plasma	1	1,796	1,797*	129	1,995	-9.9	0.036
Cryoprecipitate*	0	1.054	1.054*	132	634	66.2	<0.00

Apheresis equivalent units; numbers in parenthesis represent individual platelet concentrates produced from whole blood donations. Includes individual units and pools expressed as individual units using weighted average units per pool as reported by the responding facilities.

D. Stahl, FG 7/4 Transfusionsmedizin

12

260

		Haematology / Oncology Unit	Internal Medicine Emergency Care	Clinic for General Surgery
lumber of cases / patients		150	356	179
Allocation at blood bank	RBC	357	124	386
	Plasma	61	4	63
	Platelets	240	8	2
	Total	658	136	451
Jse of components	RBC	258	38	72
	Plasma	61	4	63
	Platelets	237	8	2
	Total	556	50	137
Allocation at blood bank	RBC / 100 cases	238,00	34,83	215,64
	Plasma / 100 cases	40,67	1,12	35,20
	Platelets / 100 cases	160,00	2,25	1,12
	Total / 100 cases	438,67	38,20	251,96
Jse of components	RBC / 100 cases	172,00	10,67	40,22
	Plasma / 100 cases	40,67	1,12	35,20
	Platelets / 100 cases	158,00	2,25	1,12
	Total / 100 cases	370,67	14,04	76,54
Allocation / Use (RBC)		72,30%	30,60%	18,70%
Allocation / Use (Platelets)		99 %	100 %	100%

Risk assessment models – Aggregated risk assessment

*

D. Stahl, FG 7/4 Transfusionsmedizin

Kleinman S et al., Transfusion 2015

RBC transfusion category	Diagnosis or procedure	Number of transfusion episodes	Total RBC unit exposure† (time)	Immune suppressed	Use of irradiated blood
Acute	Cardiac surgery ^{8,7}	Single	3‡	No	No
Acute	Trauma®	Single	5‡	Suppressed cell immunity	No
Intermittent	ICU ⁹	Variable	3.5‡	No	No
Intermittent	Cardiovascular disease ¹⁰	Variable	3‡	No	No
Sustained over limited time frame	HSCT ^{11,12}	Multiple	10-20 (3-6 months)	Yes	Yes
Chronic but time-limited	MDS ¹³	Multiple	13/year (3 years)	Immunosuppressed in many cases	No§
Chronic, lifelong	SCD ¹⁴ Thalassemia ¹⁷	Multiple	24‡/year (30 years ^{15,16}) 15/year (50 years ^{18,19})	Asplenic No	No§

These data are taken from representative publications for each RBC transfusion category and may not be fully reflective of all practice terns. Depending on how the data were presented in the cited publication(s), they are expressed as a median, mean, or range thereof.
The data include only the patients who received transfusions.
Median.
Not routinely; may be irradiated if hospital-wide policies for hematology-oncology patients or for pediatric patients require.

33

TABLE 4. Per unit	t risk in transfused RBC un	der current donor testing protocols in the United States
Pathogen	Risk	Method of estimation
Higher-risk pathogens		A set of the set of the set of the set
B. microti ²⁷	0.076% (1 in 1316)	Antibody and PCR data in endemic areas under IND screening
CMV ^{1,46}	0.1%	Detection of infection in transfused recipients and PCR data in donors
CIVIV	(1 in 1000)*	belection of infection in transfused recipients and Peri data in donois
EIA	(1.11.1000)	
Acute-type agent4	0.025%	Mathematical modeling
	(1 in 4000)	
Chronic-type agent ⁴	0.045%	Mathematical modeling‡
	(1 in 2222)	
Lower-risk pathogens		
Plasmodia-all species	Rare 0.00005%	Clinical case reporting (<1 TT case per year in United States) Based on French and German Data
Bacteria ³³	(1 in 2 million)	No documented clinical cases in the United States in past 5 years;
	Clinical Sepsis	May be more common for subclinical cases
A. phagocytophilum ^{50,51}	Rare	Clinical case reporting (<1 TT case per year in United States):
n. phagocytopinan	That's	May be more common for subclinical cases
HIV ⁶³	0.00007%	Mathematical modeling§
	(1 in 1.5 million)	
HCV ⁶³	0.00009%	Mathematical modeling§
- COL.	(1 in 1.1 million)	
HBV ⁶⁴	0.0001%	Mathematical modeling§
	(1 in 1 million)	
WNV ⁶⁵	Rare	Clinical case reporting (<1 TT case per year in United States)

	testing algorithms in th	e United States Aggregate risk pe	r patient (%)
Diagnosis	RBC unit exposure	Minimum*1	Maximum†
Cardiac surgery	3	0.0009 (1/107,000)	0.36 (1/27)
frauma	5	0.0016 (1/65,000)	0.60 (1/16)
CU	3.5	0.0011 (1/91,000)	0.42 (1/23
Cardiovascular disease	3	0.0009 (1/107,000)	0.36 (1/27
ISCT	15	1.49 (1/67)	3.25 (1/31)
MDS	39	0.012 (1/8,000)	3.76 (1/27)
SCD	720	0.22 (1/450)	43.17 (1/2)
Thalassemia	750	0.23 (1/430)	45.13 (1/2)
Lifetime risks, except for cardiov Lifetime risk would increase for for HSCT patients, where mini 0.12031% for the first four pa	then large numbers of units are transfuses vascular disease and ICU patient groups. patients transfused on multiple occasions imum risk is 0.10031% based on poten tient groups and 0.22031% for HSCT (f (when a new acute EIA is in the blood	In the latter groups, risk is for a single ha . ¹ Minimum per-unit risk is 0.00031% for tial sequelae from TT-CMV infection. ² M patients. For patients with MDS, SCD,	all patient groups excep Maximum per-unit risk and thalassemia, risk

Bibliographies

KLINIKUM

der universität müncheni RUDOLF-MARX-STIFTUNG

EUROPEAN SYMPOSIUM IV Wildbad Kreuth Initiative -Optimal use of clotting factors and platelets 6-7 May 2016, Freising, Germany

Optimal use of clotting factors Published peer reviewed studies 2013-2016

Haemophilia A

Factor VIII concentrates

Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A.

Konkle BA, Stasyshyn O, Chowdary P, Bevan DH, Mant T, Shima M, Engl W, Dyck-Jones J, Fuerlinger M, Patrone L, Ewenstein B, Abbuehl B. *Blood.* 2015 Aug 27;126(9):1078-85. doi: 10.1182/blood-2015-03-630897.

Recombinant factor VIII Fc fusion protein for the prevention and treatment of bleeding in children with severe hemophilia A.

Young G, Mahlangu J, Kulkarni R, Nolan B, Liesner R, Pasi J, Barnes C, Neelakantan S, Gambino G, Cristiano LM, Pierce GF, Allen G.

J Thromb Haemost. 2015 Jun;13(6):967-77. doi: 10.1111/jth.12911.

Pharmacokinetics of plasma-derived vs. recombinant FVIII concentrates: a comparative study.

Morfini M, Marchesini E, Paladino E, Santoro C, Zanon E, Iorio A. *Haemophilia*. 2015 Mar;21(2):204-9. doi: 10.1111/hae.12550.

Beriate P in the treatment of patients with haemophilia A: results of a long-term pharmacovigilance study.

Klamroth R, Holzhauer S, Zimmermann R, Heller C, Kurnik K, Beriate Pharmacovigilance Group. *Thromb Res.* 2014 Nov;134 Suppl 1:S16-21.

Recombinant factor VIII Fc fusion protein: extended-interval dosing maintains low bleeding rates and correlates with von Willebrand factor levels.

Shapiro AD, Ragni MV, Kulkarni R, Oldenberg J, Srivastava A, Quon DV, Pasi KJ, Hanabusa H, Pabinger I, Mahlangu J, Fogarty P, Lillicrap D, Kulke S, Potts J, Neelakantan S, Nestorov I, Li S, Dumont JA, Jiang H, Brennan A, Pierce GF. *J Thromb Haemost*. 2014 Nov;12(11):1788-800. doi: 10.1111/jth.12723. Phase I study of BAY 94-9027, a PEGylated B-domain-deleted recombinant factor VIII with an extended half-life, in subjects with hemophilia A.

Coyle TE, Reding MT, Lin JC, Michaels LA, Shah A, Powell J. *J Thromb Haemost*. 2014 Apr;12(4):488-96.

Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A.

Mahlangu J, Powell JS, Ragni MV, Chowdary P, Josephson NC, Pabinger I, Hanabusa H, Gupta N, Kulkarni R, Fogarty P, Perry D, Shapiro A, Pasi KJ, Apte S, Nestorov I, Jiang H, Li S, Neelakantan S, Cristiano LM, Goyal J, Sommer JM, Dumont JA, Dodd N, Nugent K, Vigliani G, Luk A, Brennan A, Pierce GF; A-LONG Investigators.

Blood. 2014 Jan 16;123(3):317-25. doi: 10.1182/blood-2013-10-529974.

Correlation between endogenous VWF:Ag and PK parameters and bleeding frequency in severe haemophilia A subjects during three-times-weekly prophylaxis with rFVIII-FS.

Lalezari S, Martinowitz U, Windyga J, Enriquez MM, Delesen H, Schwartz L, Scharrer I.

Haemophilia. 2014 Jan;20(1):e15-22. doi: 10.1111/hae.12294.

Results from a large multinational clinical trial (guardian[™]3) using prophylactic treatment with turoctocog alfa in paediatric patients with severe haemophilia A: safety, efficacy and pharmacokinetics.

Kulkarni R, Karim FA, Glamocanin S, Janic D, Vdovin V, Ozelo M, Rageliene L, Carboni E, Laguna P, Dobaczewski G, Seremetis S, Lindblom A, Santagostino E. *Haemophilia*. 2013 Sep;19(5):698-705. doi: 10.1111/hae.12165.

Results from a large multinational clinical trial (guardian[™]1) using prophylactic treatment with turoctocog alfa in adolescent and adult patients with severe haemophilia A: safety and efficacy.

Lentz SR, Misgav M, Özelo M, Salek SZ, Veljkovic D, Recht M, Cerqueira M, Tiede A, Brand B, Mancuso ME, Seremetis S, Lindblom A, Martinowitz U. *Haemophilia*. 2013 Sep;19(5):691-7. doi: 10.1111/hae.12159.

Enhancing the pharmacokinetic properties of recombinant factor VIII: first-inhuman trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A.

Tiede A, Brand B, Fischer R, Kavakli K, Lentz SR, Matsushita T, Rea C, Knobe K, Viuff D.

J Thromb Haemost. 2013 Apr;11(4):670-8. doi: 10.1111/jth.12161.

Recruitment update of AHEAD.

Oldenburg J, Zimmermann R, Huth-Kühne A, Kurnik K, Klamroth R, Abraham I, Brondke H, Pirck M, Engl W, Reininger A, Spotts G. *Hämostaseologie*. 2013;33 Suppl 1:S56-60.

Inhibitors (Haemophilia A continued)

IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII. Matino D, Gargaro M, Santagostino E, Di Minno MN, Castaman G, Morfini M, Rocino A, Mancuso ME, Di Minno G, Coppola A, Talesa VN, Volpi C, Vacca C, Orabona C, Iannitti R, Mazzucconi MG, Santoro C, Tosti A, Chiappalupi S, Sorci G, Tagariello G, Belvini D, Radossi P, Landolfi R, Fuchs D, Boon L, Pirro M, Marchesini E, Grohmann U, Puccetti P, Iorio A, Fallarino F.

J Clin Invest. 2015 Oct 1;125(10):3766-81.

Characteristics of hemophilia patients with factor VIII inhibitors detected by prospective screening.

Miller CH, Rice AS, Boylan B, Payne AB, Kelly FM, Escobar MA, Gill J, Leissinger C, Soucie JM, Hemophilia Inhibitor Research Study Investigators. *Am J Hematol.* 2015 Oct; 90(10):871-6.

Anti-A2 and anti-A1 domain antibodies are potential predictors of immune tolerance induction outcome in children with hemophilia A.

Lapalud P, Rothschild C, Mathieu-Dupas E, Balicchi J, Gruel Y, Laune D, Molina F, Schved JF, Granier C, Lavigne-Lissalde G. *J Thromb Haemost*. 2015 Apr;13(4):540-7.

Does the presence of von Willebrand factor in FVIII-deficient plasma influences the measurement of FVIII inhibitor titres in haemophilia A patients?. Pouplard C, Desconclois C, Sobas F, Aillaud MF, Ternisien C, Caron C. *Int J Lab Hematol.* 2015 Feb;37(1):125-32.

Design of the INHIBIT trial: preventing inhibitors by avoiding 'danger', prolonging half-life and promoting tolerance. Ragni MV, Malec LM.

Expert Rev Hematol. 2014 Dec;7(6):747-55. doi: 10.1586/17474086.2014.963550.

Immune tolerance induction using a factor VIII/von Willebrand factor concentrate (BIOSTATE), with or without immunosuppression, in Australian paediatric severe haemophilia A patients with high titre inhibitors: a multicentre, retrospective study.

Robertson JD, Higgins P, Price J, Dunkley S, Barrese G, Curtin J. *Thromb Res.* 2014 Nov;134(5):1046-51.

Recombinant factor VIII products and inhibitor development in previously untreated boys with severe hemophilia A.

Calvez T, Chambost H, Claeyssens-Donadel S, d'Oiron R, Goulet V, Guillet B, Heritier V, Milien V, Rothschild C, Roussel-Robert V, Vinciguerra C, Goudemand J, FranceCoag Network.

Blood. 2014 Nov 27;124(23):3398-408.

Incidence and risk factors for inhibitor development in previously untreated severe haemophilia A patients born between 2005 and 2010.

Vezina C, Carcao M, Infante-Rivard C, Lillicrap D, Stain AM, Paradis E, Teitel J, Rivard GE, Association of Hemophilia Clinic Directors of Canada and of the Canadian Association of Nurses in Hemophilia Care. *Haemophilia*. 2014 Nov;20(6):771-6.

Rituximab for treatment of inhibitors in haemophilia A. A Phase II study.

Leissinger C, Josephson CD, Granger S, Konkle BA, Kruse-Jarres R, Ragni MV, Journeycake JM, Valentino L, Key NS, Gill JC, McCrae KR, Neufeld EJ, Manno C, Raffini L, Saxena K, Torres M, Marder V, Bennett CM, Assmann SF. *Thromb Haemost.* 2014 Sep 2;112(3):445-58. doi: 10.1160/TH14-01-0078.

Rituximab as first-line treatment for the management of adult patients with nonsevere hemophilia A and inhibitors.

Lim MY, Nielsen B, Lee K, Kasthuri RS, Key NS, Ma AD. *J Thromb Haemost.* 2014 Jun;12(6):897-901.

Influence of factor 5 rs6025 and factor 2 rs1799963 mutation on inhibitor development in patients with hemophilia A--an Israeli-German multicenter database study.

Kenet G, Bidlingmaier C, Bogdanova N, Ettingshausen CE, Goldenberg N, Gutsche S, Halimeh S, Holzhauer S, Kurnik K, Limperger V, Junker R, Nowak-Gottl U. *Thromb Res.* 2014 Apr;133(4):544-9.

Primary and rescue immune tolerance induction in children and adults: a multicentre international study with a VWF-containing plasma-derived FVIII concentrate.

Oldenburg J, Jimenez-Yuste V, Peiro-Jordan R, Aledort LM, Santagostino E. Haemophilia. 2014 Jan;20(1):83-91.

Development of inhibitory antibodies to therapeutic factor VIII in severe hemophilia A is associated with microsatellite polymorphisms in the HMOX1 promoter.

Repesse Y, Peyron I, Dimitrov JD, Dasgupta S, Moshai EF, Costa C, Borel-Derlon A. Guillet B, D'Oiron R, Aouba A, Rothschild C, Oldenburg J, Pavlova A, Kaveri SV, Lacroix-Desmazes S, ABIRISK consortium. Haematologica. 2013 Oct;98(10):1650-5.

Factor VIII gene (F8) mutation and risk of inhibitor development in nonsevere hemophilia A.

Eckhardt CL, van Velzen AS, Peters M, Astermark J, Brons PP, Castaman G, Cnossen MH, Dors N, Escuriola-Ettingshausen C, Hamulyak K, Hart DP, Hay CR, Haya S, van Heerde WL, Hermans C, Holmstrom M, Jimenez-Yuste V, Keenan RD, Klamroth R, Laros-van Gorkom BA, Leebeek FW, Liesner R, Makipernaa A, Male C, Mauser-Bunschoten E, Mazzucconi MG, McRae S, Meijer K, Mitchell M, Morfini M, Nijziel M, Oldenburg J, Peerlinck K, Petrini P, Platokouki H, Reitter-Pfoertner SE, Santagostino E, Schinco P, Smiers FJ, Siegmund B, Tagliaferri A, Yee TT, Kamphuisen PW, van der Bom JG, Fijnvandraat K, INSIGHT Study Group. Blood. 2013 Sep 12;122(11):1954-62.

Clot lysis phenotype and response to recombinant factor VIIa in plasma of haemophilia A inhibitor patients.

Bakhtiari K, Kamphuisen PW, Mancuso ME, Hamulyak K, Schutgens RE, Santagostino E, Meijers JC.

Br J Haematol. 2013 Sep;162(6):827-35. doi: 10.1111/bjh.12470.

Health-related quality of life in patients with haemophilia and inhibitors on prophylaxis with anti-inhibitor complex concentrate: results from the Pro-FEIBA study.

Gringeri A, Leissinger C, Cortesi PA, Jo H, Fusco F, Riva S, Antmen B, Berntorp E, Biasoli C, Carpenter S, Kavakli K, Morfini M, Négrier C, Rocino A, Schramm W, Windyga J, Zülfikar B, Mantovani LG. Haemophilia. 2013 Sep;19(5):736-43. doi: 10.1111/hae.12178.

Combined administration of FVIII and rFVIIa improves haemostasis in haemophilia A patients with high-responding inhibitors--a thrombin generationguided pilot study.

Livnat T, Martinowitz U, Azar-Avivi S, Zivelin A, Brutman-Barazani T, Lubetsky A, Kenet G.

Haemophilia. 2013 Sep;19(5):782-9. doi: 10.1111/hae.12181.

High rate of spontaneous inhibitor clearance during the long term observation study of a single cohort of 524 haemophilia A patients not undergoing immunotolerance.

Tagariello G, Iorio A, Matino D, Belvini D, Salviato R, Sartori R, Radossi P. J Hematol Oncol. 2013 Aug 30;6:63. doi: 10.1186/1756-8722-6-63.

Comparison of clot-based, chromogenic and fluorescence assays for measurement of factor VIII inhibitors in the US Hemophilia Inhibitor Research Study.

Miller CH, Rice AS, Boylan B, Shapiro AD, Lentz SR, Wicklund BM, Kelly FM, Soucie JM, Hemophilia Inhibitor Research Study Investigators. J Thromb Haemost. 2013 Jul;11(7):1300-9.

Intensity of factor VIII treatment and inhibitor development in children with severe hemophilia A: the RODIN study.

Gouw SC, van den Berg HM, Fischer K, Auerswald G, Carcao M, Chalmers E, Chambost H, Kurnik K, Liesner R, Petrini P, Platokouki H, Altisent C, Oldenburg J, Nolan B, Garrido RP, Mancuso ME, Rafowicz A, Williams M, Clausen N, Middelburg RA, Ljung R, van der Bom JG, PedNet and Research of Determinants of INhibitor development (RODIN) Study Group.

Blood. 2013 May 16;121(20):4046-55.

The polygenic nature of inhibitors in hemophilia A: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort.

Astermark J, Donfield SM, Gomperts ED, Schwarz J, Menius ED, Pavlova A, Oldenburg J, Kessing B, DiMichele DM, Shapiro AD, Winkler CA, Berntorp E; Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort. *Blood.* 2013 Feb 21;121(8):1446-54. doi: 10.1182/blood-2012-06-434803.

Use of Haemate() P as immune tolerance induction in patients with severe haemophilia A who failed previous induction attempts: a multicentre observational study.

Rothschild C, D'Oiron R, Borel-Derlon A, Gruel Y, Navarro R, Negrier C. *Haemophilia*. 2013 Mar;19(2):281-6.

Distinct characteristics of antibody responses against factor VIII in healthy individuals and in different cohorts of hemophilia A patients.

Whelan SF, Hofbauer CJ, Horling FM, Allacher P, Wolfsegger MJ, Oldenburg J, Male C, Windyga J, Tiede A, Schwarz HP, Scheiflinger F, Reipert BM. *Blood.* 2013 Feb 7;121(6):1039-48.

Prophylaxis (Haemophilia A continued)

Benefits of prophylaxis versus on-demand treatment in adolescents and adults with severe haemophilia A: the POTTER study.

Tagliaferri A, Feola G, Molinari AC, Santoro C, Rivolta GF, Cultrera DB, Gagliano F, Zanon E, Manusco ME, Valdré L, Mameli L, Amoresano S, Mathew P, Cppola A; POTTER Study Group.

Thromb Haemost. 2015 Jul;114(1):35-45. doi: 10.1160/TH14-05-0407.

Controlled, cross-sectional MRI evaluation of joint status in severe haemophilia A patients treated with prophylaxis vs. on demand.

Oldenburg J, Zimmermann R, Katsarou O, Theodossiades G, Zanon E, Niemann B, Kellermann E, Lundin B, Cross-sectional MRI study investigators. *Haemophilia*. 2015 Mar;21(2):171-9.

Adherence to prophylaxis is associated with better outcomes in moderate and severe haemophilia: results of a patient survey.

Krishnan S, Vietri J, Furlan R, Duncan N. *Haemophilia*. 2015 Jan;21(1):64-70.

Assessment of the impact of treatment on quality of life of patients with haemophilia A at different ages: insights from two clinical trials on turoctocog alfa.

Santagostino E, Lentz SR, Busk AK, Regnault A, Iorio A. *Haemophilia*. 2014 Jul;20(4):527-34. doi: 10.1111/hae.12371.

Patient characteristics that influence efficacy of prophylaxis with rFVIII-FS three times per week: a subgroup analysis of the LIPLONG study.

Lalezari S, Coppola A, Lin J, Enriquez MM, Tseneklidou-Stoeter D, Powell J, Ingerslev J; LIPLONG Investigators. *Haemophilia*. 2014 May;20(3):354-61. Long-standing prophylactic therapy vs. episodic treatment in young people with severe haemophilia: a comparison of age-matched Danish and Russian patients. Ingerslev J, Lethagen S, Hvitfeldt Poulsen L, Sorensen B, Lopatina E, Tentsova I, Yastrubinetskaya O, Plyushch OP. Haemophilia. 2014 Jan;20(1):58-64.

Consequences of switching from prophylactic treatment to on-demand treatment in late teens and early adults with severe haemophilia A: the TEEN/TWEN study. Manco-Johnson MJ, Sanders J, Ewing N, Rodriguez N, Tarantino M, Humphries T, TEEN/TWEN Study Group. *Haemophilia.* 2013 Sep;19(5):727-35.

Randomized, controlled, parallel-group trial of routine prophylaxis vs. ondemand treatment with sucrose-formulated recombinant factor VIII in adults with severe hemophilia A (SPINART).

Manco-Johnson MJ, Kempton CL, Reding MT, Lissitchkov T, Goranov S, Gercheva L, Rusen L, Ghinea M, Uscatescu V, Rescia V, Hong W.

J Thromb Haemost. 2013 Jun;11(6):1119-27. doi: 10.1111/jth.12202.

Musculoskeletal health of subjects with hemophilia A treated with tailored prophylaxis: Canadian Hemophilia Primary Prophylaxis (CHPS) Study. Hilliard P, Zourikian N, Blanchette V, Chan A, Elliott B, Israels SJ, Nilson J, Poon MC, Laferriere N, Van Neste C, Jarock C, Wu J, McLimont M, Feldman B. *J Thromb Haemost.* 2013 Mar;11(3):460-6.

Short-term low-dose secondary prophylaxis for severe/moderate haemophilia A children is beneficial to reduce bleed and improve daily activity, but there are obstacle in its execution: a multi-centre pilot study in China. Tang L, Wu R, Sun J, Zhang X, Feng X, Zhang X, Luke KH, Poon MC. Haemophilia. 2013 Jan;19(1):27-34.

Health-related Quality of Life (Haemophilia A continued)

Longitudinal changes in health-related quality of life for chronic diseases: an example in hemophilia A.

Poon JL, Doctor JN, Nichol MB. J Gen Int Med. 2014 Aug;29 Suppl 3:S760-6.

Assessment of the impact of treatment on quality of life of patients with haemophilia A at different ages: insights from two clinical trials on turoctocog alfa.

Santagostino E, Lentz SR, Busk AK, Regnault A, Iorio A. *Haemophilia*. 2014 Jul;20(4):527-34. doi: 10.1111/hae.12371.

Long-standing prophylactic therapy vs. episodic treatment in young people with severe haemophilia: a comparison of age-matched Danish and Russian patients. Ingerslev J, Lethagen S, Hvitfeldt Poulsen L, Sorensen B, Lopatina E, Tentsova I, Yastrubinetskaya O, Plyushch OP. Haemophilia. 2014 Jan;20(1):58-64.

Consequences of switching from prophylactic treatment to on-demand treatment in late teens and early adults with severe haemophilia A: the TEEN/TWEN study. Manco-Johnson MJ, Sanders J, Ewing N, Rodriguez N, Tarantino M, Humphries T, TEEN/TWEN Study Group. *Haemophilia.* 2013 Sep;19(5):727-35.

Health-related quality of life in patients with haemophilia and inhibitors on prophylaxis with anti-inhibitor complex concentrate: results from the Pro-FEIBA study.

Gringeri A, Leissinger C, Cortesi PA, Jo H, Fusco F, Riva S, Antmen B, Berntorp E, Biasoli C, Carpenter S, Kavakli K, Morfini M, Négrier C, Rocino A, Schramm W, Windyga J, Zülfikar B, Mantovani LG. *Haemophilia*. 2013 Sep;19(5):736-43. doi: 10.1111/hae.12178.

Recruitment update of AHEAD.

Oldenburg J, Zimmermann R, Huth-Kühne A, Kurnik K, Klamroth R, Abraham I, Brondke H, Pirck M, Engl W, Reininger A, Spotts G. *Hämostaseologie*. 2013;33 Suppl 1:S56-60.

Miscellaneous (Haemophilia A continued)

Evaluation of von Willebrand factor phenotypes and genotypes in Hemophilia A patients with and without identified F8 mutations.

Boylan B, Rice AS, De Staercke C, Eyster ME, Yaish HM, Knoll CM, Bean CJ, Miller CH, Hemophilia Inhibitor Research Study Investigators. *J Thromb Haemost*. 2015 Jun;13(6):1036-42.

A standardized treatment regimen for patients with severe haemophilia A undergoing orthopaedic or trauma surgery: a single centre experience. Hart C, Heindl B, Spannagl M, Lison S. Blood Coagul Fibrinolysis. 2015 Jun;26(4):396-402.

Real-life evidence in evaluating effectiveness of treatment in Haemophilia A with a recombinant FVIII concentrate: a non-interventional study in emerging countries.

Gouider E, Rauchensteiner S, Andreeva T, Al Zoebie A, Mehadzic S, Nefyodova L, Brunn M, Tueckmantel C, Meddeb B. *Haemophilia*. 2015 May;21(3):e167-75.

New protocol for detection of intron 22 inversion mutation from cases with hemophilia A.

Kumar P, Husain N, Soni P, Faridi NJ, Goel SK. *Clin Appl Thromb Hemost.* 2015 Apr;21(3):255-9. doi: 10.1177/1076029613498817.

Continuous infusion of recombinant factor VIII formulated with sucrose in surgery: non-interventional, observational study in patients with severe haemophilia A.

Meijer K, Rauchensteiner S, Santagostino E, Platokouki H, Schutgens RE, Brunn M, Tueckmantel C, Valeri F, Schinco PC. *Haemophilia*. 2015 Jan;21(1):e19-25.

Impact of health instructions on improving knowledge and practices of haemophilia A adolescents: a single centre experience.

El Dakhakhny AM, Hesham MA, Hassan TH, El Awady S, Hanfy MM. *Haemophilia*. 2014 Jul;20(4):e260-6. doi: 10.1111/hae.12431.

Effects of short-term resistance training and pulsed electromagnetic fields on bone metabolism and joint function in severe haemophilia A patients with osteoporosis: a randomized controlled trial.

Parhampour B, Torkaman G, Hoorfar H, Hedayati M, Ravanbod R. *Clin Rehabil.* 2014 May;28(5):440-50. doi: 10.1177/0269215513505299.

Efficacy of celecoxib in the treatment of joint pain caused by advanced haemophilic arthropathy in adult patients with haemophilia A. Rodriguez-Merchan EC, de la Corte-Rodriguez H, Jimenez-Yuste V.

Haemophilia. 2014 May;20(3):e225-7. doi: 10.1111/hae.12393.

Both hemophilia health care providers and hemophilia A carriers report that carriers have excessive bleeding.

Paroskie A, Oso O, Almassi B, DeBaun MR, Sidonio RF Jr. *J Pediatr Hematol Oncol.* 2014 May;36(4):e224-30. doi:

10.1097/MPH.000000000000022.

Out-of-pocket and catastrophic expenditure on treatment of haemophilia by Indian families.

Dharmarajan S, Phadnis S;, Gund P, Kar A. *Haemophilia*. 2014 May;20(3):382-7.

Method validation and clinical utility of chromogenic factor VIII assay compared to one-stage assay.

Gouws W, Botha E, Visser A. *J Thromb Thrombolysis*. 2014;37(2):210-5. doi: 10.1007/s11239-013-0910-3.

Mutations in intron 1 and intron 22 inversion negative haemophilia A patients from Western India.

Nair PS, Shetty SD, Chandrakala S, Ghosh K. *PLoS One*. 2014 May 20;9(5):e97337. doi: 10.1371/journal.pone.0097337.

Obesity in haemophilia patients: effect on bleeding frequency, clotting factor concentrate usage, and haemostatic and fibrinolytic parameters.

Tuinenburg A, Biere-Rafi S, Peters M, Verhamme P, Peerlinck K, Kruip MJ, Laros-Van Gorkom BA, Roest M, Meijers JC, Kamphuisen PW, Schutgens RE. *Haemophilia*. 2013 Sep;19(5):744-52.

Impact of being underweight or overweight on factor VIII dosing in hemophilia A patients.

Henrard S, Speybroeck N, Hermans C. *Haematologica*. 2013 Sep;98(9):1481-6. doi: 10.3324/haematol.2013.084038.

Protected by nature? Effects of strenuous physical exercise on FVIII activity in moderate and mild haemophilia A patients: a pilot study.

Groen WG, den Uijl IE, van der Net J, Grobbee DE, de Groot PG, Fischer K. *Haemophilia*. 2013 Jul;19(4):519-23. doi: 10.1111/hae.12111.

Phase II prospective open-label trial of recombinant interleukin-11 in desmopressin-unresponsive von Willebrand disease and mild or moderate haemophilia A.

Ragni MV, Novelli EM, Murshed A, Merricks EP, Kloos MT, Nichols TC. *Thromb Haemost.* 2013 Feb;109(2):248-54. doi: 10.1160/TH12-06-0447.

Radiosynoviorthesis in hemophilic joints with yttrium-90 citrate and rhenium-186 sulfide and long term results.

Teyssler P, Taborska K, Kolostova K, Bobek V. *Hell J Nucl Med.* 2013 Jan-Apr;16(1):44-9. doi: 10.1967/s002449910071.

A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A.

Lane J, McLaren PJ, Dorrell L, Shianna KV, Stemke A, Pelak K, Moore S, Oldenburg J, Alvarez-Roman MT, Angelillo-Scherrer A, Boehlen F, Bolton-Maggs PH, Brand B, Brown D, Chiang E, Cid-Haro AR, Clotet B, Collins P, Colombo S, Dalmau J, Fogarty P, Giangrande P, Gringeri A, Iyer R, Katsarou O, Kempton C, Kuriakose P, Lin J, Makris M, Manco-Johnson M, Tsakiris DA, Martinez-Picado J, Mauser-Bunschoten E, Neff A, Oka S, Oyesiku L, Parra R, Peter-Salonen K, Powell J, Recht M, Shapiro A, Stine K, Talks K, Telenti A, Wilde J, Yee TT, Wolinsky SM, Martinson J, Hussain SK, Bream JH, Jacobson LP, Carrington M, Goedert JJ, Haynes BF, McMichael AJ, Goldstein DB, Fellay J, NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI). *Hum Mol Genet*. 2013 May 1;22(9):1903-10.

Haemophilia B

Factor IX concentrates

Recombinant factor IX (BAX326) in previously treated paediatric patients with haemophilia B: a prospective clinical trial.

Urasinski T(1), Stasyshyn O, Andreeva T, Rusen L, Perina FG, Oh MS, Chapman M, Pavlova BG, Valenta-Singer B, Abbuehl BE.

Haemophilia. 2015 Mar;21(2):196-203. doi: 10.1111/hae.12548.

Switching to recombinant factor IX Fc fusion protein prophylaxis results in few er infusions, decreased factor IX consumption and lower bleeding rates. Powell J, Shapiro A, Ragni M, Negrier C, Windyga J, Ozelo M, Pasi J, Baker R, Potts J, Li S, Mei B, Pierce GF, Robinson B.

Br J Haematol. 2015 Jan;168(1):113-23. doi: 10.1111/bjh.13109.

Long-acting recombinant factor IX Fc fusion protein (rFIXFc) for perioperative management of subjects with haemophilia B in the phase 3 B-LONG study. Powell JS, Apte S, Chambost H, Hermans C, Jackson S, Josephson NC, Mahlangu JN, Ozelo MC, Peerlinck K, Pasi J, Perry D, Ragni MV, Wang X, Jiang H, Li S, Cristiano LM, Innes A, Nugent K, Brennan A, Luk A, Allen G, Pierce GF, Robinson B. *Br J Haematol.* 2015 Jan;168(1):124-34. doi: 10.1111/bjh.13112.

Recombinant long-acting glycoPEGylated factor IX in hemophilia B: a multinational randomized phase 3 trial.

Collins PW, Young G, Knobe K, Karim FA, Angchaisuksiri P, Banner C, Gürsel T, Mahlangu J, Matsushita T, Mauser-Bunschoten EP, Oldenburg J, Walsh CE, Negrier C; paradigm 2 Investigators.

Blood. 2014 Dec 18;124(26):3880-6. doi: 10.1182/blood-2014-05-573055.

Pharmacokinetic and pharmacodynamic properties of plasma-derived vs. recombinant factor IX in patients with hemophilia B: a prospective crossover study.

Alamelu J, Bevan D, Sorensen B, Rangarajan S. J Thromb Haemost. 2014 Dec;12(12):2044-8. doi: 10.1111/jth.12756.

Safe switching from a pdFIX (Immunine®) to a rFIX (Bax326).

Solano Trujillo MH, Stasyshyn O, Rusen L, Serban M, Lamas JL, Perina FG, Urasinski T, Oh M, Knowlton WB, Valenta-Singer B, Pavlova BG, Abbuehl B. *Haemophilia*. 2014 Sep;20(5):674-81. doi: 10.1111/hae.12444.

Efficacy and safety of a recombinant factor IX (Bax326) in previously treated patients with severe or moderately severe haemophilia B undergoing surgical or other invasive procedures: a prospective, open-label, uncontrolled, multicentre, phase III study.

Windyga J, Lissitchkov T, Stasyshyn O, Mamonov V, Ghandehari H, Chapman M, Fritsch S, Wong WY, Pavlova BG, Abbuehl BE.

Haemophilia. 2014 Sep;20(5):651-8. doi: 10.1111/hae.12419.

Population pharmacokinetic modelling of recombinant factor IX Fc fusion protein (rFIXFc) in patients with haemophilia B.

Diao L, Li S, Ludden T, Gobburu J, Nestorov I, Jiang H. *Clin Pharmacokinet*. 2014 May;53(5):467-77. doi: 10.1007/s40262-013-0129-7.

Pharmacokinetics, efficacy and safety of BAX326, a novel recombinant factor IX: a prospective, controlled, multicentre phase I/III study in previously treated patients with severe (FIX level <1%) or moderately severe (FIX level ≤2%) haemophilia B.

Windyga J, Lissitchkov T, Stasyshyn O, Mamonov V, Rusen L, Lamas JL, Oh MS, Chapman M, Fritsch S, Pavlova BG, Wong WY, Abbuehl BE. *Haemophilia*. 2014 Jan;20(1):15-24. doi: 10.1111/hae.12228

Phase 3 study of recombinant factor IX Fc fusion protein in hemophilia B.

Powell JS, Pasi KJ, Ragni MV, Ozelo MC, Valentino LA, Mahlangu JN, Josephson NC, Perry D, Manco-Johnson MJ, Apte S, Baker RI, Chan GC, Novitzky N, Wong RS, Krassova S, Allen G, Jiang H, Innes A, Li S, Cristiano LM, Goyal J, Sommer JM, Dumont JA, Nugent K, Vigliani G, Brennan A, Luk A, Pierce GF; B-LONG Investigators.

N Engl J Med. 2013 Dec 12;369(24):2313-23. doi: 10.1056/NEJMoa1305074.

Head-to-head comparison of the pharmacokinetic profiles of a high-purity factor IX concentrate (AlphaNine®) and a recombinant factor IX (BeneFIX®) in patients with severe haemophilia B.

Lissitchkov T, Matysiak M, Zavilska K, Laguna P, Gercheva L, Antonov A, Moret A, Caunedo P, Aznar JA, Woodward MK, Páez A. *Haemophilia*. 2013 Sep;19(5):674-8. doi: 10.1111/hae.12148.

PROLONG-9FP clinical development program--phase I results of recombinant fusion protein linking coagulation factor IX with recombinant albumin (rIX-FP). Santagostino E.

Thromb Res. 2013 Mar;131 Suppl 2:S7-10. doi: 10.1016/S0049-3848(13)70151-8.

Phase I/II, open-label, multicenter, safety, efficacy and PK study of a recombinant coagulation factor IX albumin fusion protein (rIX-FP) in subjects with hemophilia B.

Martinowitz U, Lubetsky A.

Thromb Res. 2013 Mar;131 Suppl 2:S11-4. doi: 10.1016/S0049-3848(13)70152-X.

Prophylaxis (Haemophilia B continued)

Recombinant long-acting glycoPEGylated factor IX in hemophilia B: a multinational randomized phase 3 trial.

Collins PW, Young G, Knobe K, Karim FA, Angchaisuksiri P, Banner C, Gürsel T, Mahlangu J, Matsushita T, Mauser-Bunschoten EP, Oldenburg J, Walsh CE, Negrier C; paradigm 2 Investigators.

Blood. 2014 Dec 18;124(26):3880-6. doi: 10.1182/blood-2014-05-573055.

Patterns of tertiary prophylaxis in Canadian adults with severe and moderately severe haemophilia B.

Jackson SC, Yang M, Minuk L, St-Louis J, Sholzberg M, Card R, Iorio A, Poon MC. *Haemophilia*. 2014 May;20(3):e199-204.

Multicentre, randomized, open-label study of on-demand treatment with two prophylaxis regimens of recombinant coagulation factor IX in haemophilia B subjects.

Valentino LA, Rusen L, Elezovic I, Smith LM, Korth-Bradley JM, Rendo P. Haemophilia. 2014 May;20(3):398-406. doi: 10.1111/hae.12344.

Health-related Quality of Life (Haemophilia B continued)

EQOFIX: a combined economic and quality-of-life study of hemophilia B treatments in France.

Polack B, Calvez T, Chambost H, Rothschild C, Goudemand J, Claeyssens S, Borel-Derlon A, Bardoulat I, Maurel F, Woronoff-Lemsi MC; EQOFIX Study Group. *Transfusion.* 2015 Jul;55(7):1787-97. doi: 10.1111/trf.13016.

Recombinant long-acting glycoPEGylated factor IX in hemophilia B: a multinational randomized phase 3 trial.

Collins PW, Young G, Knobe K, Karim FA, Angchaisuksiri P, Banner C, Gürsel T, Mahlangu J, Matsushita T, Mauser-Bunschoten EP, Oldenburg J, Walsh CE, Negrier C; paradigm 2 Investigators.

Blood. 2014 Dec 18;124(26):3880-6. doi: 10.1182/blood-2014-05-573055.

Physical activity and health outcomes in persons with haemophilia B.

Niu X, Poon JL, Riske B, Zhou ZY, Ullman M, Lou M, Baker J, Koerper M, Curtis R, Nichol MB.

Haemophilia. 2014 Nov;20(6):814-21.

Improvement in health-related quality of life with recombinant factor IX prophylaxis in severe or moderately severe haemophilia B patients: results from the BAX326 Pivotal Study.

Windyga J, Lin VW, Epstein JD, Ito D, Xiong Y, Abbuehl BE, Ramirez JH. *Haemophilia*. 2014 May;20(3):362-8. doi: 10.1111/hae.12315.

Miscellaneous (Haemophilia B continued)

Long-term safety and efficacy of factor IX gene therapy in hemophilia B. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, Della Peruta M, Lheriteau E, Patel N, Raj D, Riddell A, Pie J, Rangarajan S, Bevan D, Recht M, Shen YM, Halka KG, Basner-Tschakarjan E, Mingozzi F, High KA, Allay J, Kay MA, Ng CY, Zhou J, Cancio M, Morton CL, Gray JT, Srivastava D, Nienhuis AW, Davidoff AM.

N Engl J Med. 2014 Nov 20;371(21):1994-2004. doi: 10.1056/NEJMoa1407309.

Lack of seasonal variation in bleeding and patient-assessed pain patterns in patients with haemophilia B receiving on-demand therapy. Shafer F, Smith L, Vendetti N, Rendo P, Carr M. *Haemophilia*. 2014 May;20(3):349-53. doi: 10.1111/hae.12305.

Haemophilia A and B

Inhibitors

Evaluating and monitoring the efficacy of recombinant activated factor VIIa in patients with haemophilia and inhibitors.

Qi X, Zhao Y, Li K, Fan L, Hua B. Blood Coagul Fibrinolysis. 2014 Oct;25(7):754-60. doi:

10.1097/MBC.000000000000137.

Prophylaxis with anti-inhibitor coagulant complex improves health-related quality of life in haemophilia patients with inhibitors: results from FEIBA NF Prophylaxis Study.

Stasyshyn O, Antunes S, Mamonov V, Ye X, Epstein J, Xiong Y, Tangada S. *Haemophilia*. 2014 Sep;20(5):644-50. doi: 10.1111/hae.12390.

Impact of acute bleeding on daily activities of patients with congenital hemophilia with inhibitors and their caregivers and families: observations from the Dosing Observational Study in Hemophilia (DOSE).

Recht M, Neufeld EJ, Sharma VR, Solem CT, Pickard AS, Gut RZ, Cooper DL. *Value in Health.* 2014 Sep;17(6):744-8.

Recombinant factor VIIa analog in the management of hemophilia with inhibitors: results from a multicenter, randomized, controlled trial of vatreptacog alfa.

Lentz SR, Ehrenforth S, Karim FA, Matsushita T, Weldingh KN, Windyga J, Mahlangu JN; adept™2 investigators.

J Thromb Haemost. 2014 Aug;12(8):1244-53. doi: 10.1111/jth.12634.

Randomized comparison of prophylaxis and on-demand regimens with FEIBA NF in the treatment of haemophilia A and B with inhibitors.

Antunes SV, Tangada S, Stasyshyn O, Mamonov V, Phillips J, Guzman-Becerra N, Grigorian A, Ewenstein B, Wong WY.

Haemophilia. 2014 Jan;20(1):65-72. doi: 10.1111/hae.12246.

A Phase II clinical trial of a mixture of plasma-derived factor VIIa and factor X (MC710) in haemophilia patients with inhibitors: haemostatic efficacy, safety and pharmacokinetics/pharmacodynamics.

Shirahata A, Fukutake K, Takamatsu J, Shima M, Hanabusa H, Mugishima H, Amano K, Takedani H, Tamashima S, Matsushita T, Tawa A, Tanaka I, Higasa S, Kosaka Y, Fujii T, Sakai M, Migita M, Kawakami K, Ohashi Y, Saito H. *Haemophilia*. 2013 Nov;19(6):853-60. doi: 10.1111/hae.12205.

Results of the WIRK prospective, non-interventional observational study of recombinant activated factor VII (rFVIIa) in patients with congenital haemophilia with inhibitors and other bleeding disorders.

Birschmann I, Klamroth R, Eichler H, Schenk J, Kirchmaier CM, Halimeh S. *Haemophilia*. 2013 Sep;19(5):679-85.

40K glycoPEG ylated, recombinant FVIIa: 3-month, double-blind, randomized trial of safety, pharmacokinetics and preliminary efficacy in hemophilia patients with inhibitors.

Ljung R, Karim FA, Saxena K, Suzuki T, Arkhammar P, Rosholm A, Giangrande P; Pioneer™1 Investigators.

J Thromb Haemost. 2013 Jul;11(7):1260-8. doi: 10.1111/jth.12237.

Real-world outcomes with recombinant factor VIIa treatment of acute bleeds in haemophilia patients with inhibitors: results from the international ONE registry. Chambost H, Santagostino E, Laffan M, Kavakli K, ONE Registry Steering Committee on behalf of the investigators.

Haemophilia. 2013 Jul;19(4):571-7.

Assessment of individual dose utilization vs. physician prescribing recommendations for recombinant activated factor VII (rFVIIa) in paediatric and adult patients with congenital haemophilia and alloantibody inhibitors (CHwI): the Dosing Observational Study in Hemophilia (DOSE).

Gruppo RA, Kessler CM, Neufeld EJ, Cooper DL. Haemophilia. 2013 Jul;19(4):524-32.

SURgical interventions with FEIBA (SURF): international registry of surgery in haemophilia patients with inhibitory antibodies.

Négrier C, Lienhart A, Numerof R, Stephens D, Wong WY, Baghaei F, Yee TT. *Haemophilia*. 2013 May;19(3):e143-50. doi: 10.1111/hae.12080.

Results of clot waveform analysis and thrombin generation test for a plasmaderived factor VIIa and X mixture (MC710) in haemophilia patients with inhibitors--phase I trial: 2nd report.

Shirahata A, Fukutake K, Mimaya J, Takamatsu J, Shima M, Hanabusa H, Takedani H, Takashima Y, Matsushita T, Tawa A, Higasa S, Takata N, Sakai M, Kawakami K, Ohashi Y, Saito H.

Haemophilia. 2013 Mar;19(2):330-7. doi: 10.1111/hae.12024.

Health-related Quality of Life (Haemophilia A and B continued)

International cross-cultural validation study of the Canadian haemophilia outcomes: kids' life assessment tool.

McCusker PJ, Fischer K, Holzhauer S, Meunier S, Altisent C, Grainger JD, Blanchette VS, Burke TA, Wakefield C, Young NL.

Haemophilia. 2015 May;21(3):351-7.

Adherence to treatment in a Western European paediatric population with haemophilia: reliability and validity of the VERITAS-Pro scale.

Lock J, Raat H, Duncan N, Shapiro A, Beijlevelt M, Peters M, Tamminga RY, Leebeek FW, Moll HA, Cnossen MH.

Haemophilia. 2014 Sep;20(5):616-23.

Increased burden on caregivers of having a child with haemophilia complicated by inhibitors.

Lindvall K, von Mackensen S, Elmstahl S, Khair K, Stain AM, Ljung R, Berntorp E. Ped Blood Canc. 2014 Apr;61(4):706-11.

Haemophilia Experiences, Results and Opportunities (HERO) Study: survey methodology and population demographics.

Forsyth AL, Gregory M, Nugent D, Garrido C, Pilgaard T, Cooper DL, Iorio A. Haemophilia. 2014 Jan;20(1):44-51.

Miscellaneous (Haemophilia A and B continued)

Increased fracture rates in people with haemophilia: a 10-year single institution retrospective analysis.

Gay ND, Lee SC, Liel MS, Sochacki P, Recht M, Taylor JA. Br J Haematol. 2015 Aug;170(4):584-6. doi: 10.1111/bjh.13312.

The acute effect of moderate intensity aquatic exercise on coagulation factors in haemophiliacs.

Beltrame LG, Abreu L, Almeida J, Boullosa DA. Clin Physiol Funct Imaging. 2015 May;35(3):191-6. doi: 10.1111/cpf.12145.

Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia: a randomized first human dose trial. Chowdary P, Lethagen S, Friedrich U, Brand B, Hay C, Abdul Karim F, Klamroth R, Knoebl P, Laffan M, Mahlangu J, Miesbach W, Dalsgaard Nielsen J, Martín-Salces M, Angchaisuksiri P.

J Thromb Haemost. 2015 May;13(5):743-54. doi: 10.1111/jth.12864

Arthroscopic debridement for ankle haemophilic arthropathy.

Rodriguez-Merchan EC, Gomez-Cardero P, Martinez-Lloreda A, De La Corte-Rodriguez H, Jimenez-Yuste V.

Blood Coagul Fibrinolysis. 2015 Apr;26(3):279-81.

Diagnostic accuracy of ultrasound for assessment of hemophilic arthropathy: MRI correlation.

Doria AS, Keshava SN, Mohanta A, Jarrin J, Blanchette V, Srivastava A, Moineddin R, Kavitha ML, Hilliard P, Poonnoose P, Gibikote S. AJR. Am J Roentgenol. 2015 Mar;204(3):W336-47.

Favourable impact of regular swimming in young people with haemophilia: experience derived from 'Desafio del Caribe' project.

Boadas A, Osorio M, Gibraltar A, Rosas MM, Berges A, Herrera E, Gadea S, Gutiérrez MÁ, Salazar F, Ruiz-Sáez A; Desafio del Caribe Project. Haemophilia. 2015 Jan;21(1):e12-8. doi: 10.1111/hae.12576.

Development of haemophilic arthropathy of the ankle: results of a Delphi consensus survey on potential contributory factors. McCarthy A, Moore A, Redhead L, McLaughlin P, Iorio A, Chowdary P. Haemophilia. 2015 Jan;21(1):116-23.

A pilot randomized control trial to evaluate the feasibility of an Internet-based self-management and transitional care program for youth with haemophilia. Breakey VR, Ignas DM, Warias AV, White M, Blanchette VS, Stinson JN. Haemophilia. 2014 Nov;20(6):784-93. doi: 10.1111/hae.12488.
Manual therapy in the treatment of ankle hemophilic arthropathy. A randomized pilot study.

Cuesta-Barriuso R, Gómez-Conesa A, López-Pina JA. Physiother Theory Pract. 2014 Nov;30(8):534-9. doi: 10.3109/09593985.2014.902148.

Failure of corn trypsin inhibitor to affect the thrombin generation assay in plasma from severe hemophiliacs.

Mohammed BM, Martin EJ, Salinas V, Carmona R, Young G, Brophy DF. *J Thromb Haemost.* 2014 Sep;12(9):1558-61.

Prospective observational cohort studies for studying rare diseases: the European PedNet Haemophilia Registry.

Fischer K, Ljung R, Platokouki H, Liesner R, Claeyssens S, Smink E, van den Berg HM.

Haemophilia. 2014 Jul;20(4):e280-6.

Interferon lambda 3 rs12979860 polymorphism in patients with haemophilia and HCV infection: a predictor of spontaneous viral clearance and sustained virological response.

Mancuso ME, Linari S, Aghemo A, Bartolozzi D, Santagostino E, Rumi MG, Fognani E, Fasulo MR, Gragnani L, Bruno R, Morfini M, Zignego AL, Colombo M. *Thromb Haemost*. 2014 Jun;111(6):1067-76.

Is radiosynovectomy (RS) effective for joints damaged by haemophilia with articular degeneration in simple radiography (ADSR)?.

Rodriguez-Merchan EC, De La Corte-Rodriguez H, Jiménez-Yuste V. *Thromb Res.* 2014 May;133(5):875-9.

The use of 185 MBq and 740 MBq of 153-samarium hydroxyapatite for knee synovectomy in haemophilia.

Calegaro JU, Machado J, Furtado RG, de Almeida JS, de Vasconcelos AV, de Barboza MF, de Paula AP.

Haemophilia. 2014 May;20(3):421-5. doi: 10.1111/hae.12319.

Influence of ankle plantar flexor muscle architecture and strength on gait in boys with haemophilia in comparison to typically developing children. Stephensen D, Drechsler WI, Scott OM. Haemophilia. 2014 May;20(3):413-20.

Quality of haemophilia care in The Netherlands: new standards for optimal care. Leebeek FW, Fischer K.

Blood Transfus. 2014 Apr;12 Suppl 3:s501-4. doi: 10.2450/2014.0041-14s.

Frequent human parvovirus B19 DNA occurrence and high seroprevalence in haemophilic patients from a non-metropolitan blood centre, Brazil.

Slavov SN, Kashima S, Rocha-Junior MC, Oliveira LC, Silva-Pinto AC, Yamamoto AY, Covas DT.

Transfus Med. 2014 Apr;24(2):130-2. doi: 10.1111/tme.12113.

Self-monitoring has potential for home exercise programmes in patients with haemophilia.

Goto M, Takedani H, Haga N, Kubota M, Ishiyama M, Ito S, Nitta O. *Haemophilia*. 2014 Mar;20(2):e121-7. doi: 10.1111/hae.12355.

Effectiveness of two modalities of physiotherapy in the treatment of haemophilic arthropathy of the ankle: a randomized pilot study.

Cuesta-Barriuso R, Gómez-Conesa A, López-Pina JA. Haemophilia. 2014 Jan;20(1):e71-8. doi: 10.1111/hae.12320.

Cancer detection and management in patients with haemophilia: a retrospective European multicentre study.

Biron-Andreani C, de Moerloose P, D'oiron R, Chambost H, Schved JF, Hermans C. *Haemophilia*. 2014 Jan;20(1):78-82.

[Food consumption and dietary behaviour in haemophilia patients before and after a nutrition consultation]. [Article in German]

Czepa D, Hilberg W, Poschmann J, Straaten S, Hilberg T. Hämostaseologie. 2014;34 Suppl 1:S43-7. doi: 10.5482/HAMO-14-02-0012.

Morbidity and mortality of haemophilia patients in Germany. Survey results 2011/2012.

Schramm W, Rieger A. *Hämostaseologie*. 2013;33 Suppl 1:S5-9.

Establishing a harmonized haemophilia registry for countries with developing health care systems.

Alzoebie A, Belhani M, Eshghi P, Kupesiz AO, Ozelo M, Pompa MT, Potgieter J, Smith M.

Haemophilia. 2013 Sep;19(5):668-73.

The effect of monthly ibandronate on bone mineral density and bone turnover markers in patients with haemophilia A and B and increased risk for fracture. Anagnostis P, Vyzantiadis TA, Charizopoulou M, Adamidou F, Karras S, Goulis DG, Karagiannis A, Garipidou V, Vakalopoulou S.

Thromb Haemost. 2013 Aug;110(2):257-63. doi: 10.1160/TH13-01-0030.

Turning severe into moderate haemophilia by prophylaxis: are we reaching our goal?

den Uijl I, Biesma D, Grobbee D, Fischer K. Blood Transfus. 2013 Jul;11(3):364-9. doi: 10.2450/2012.0092-12.

The effect of neutral-cushioned running shoes on the intra-articular force in the haemophilic ankle.

McLaughlin P, Chowdary P, Woledge R, McCarthy A, Mayagoitia R. *Clin Biomech (Bristol, Avon)*. 2013 Jul;28(6):672-8. doi: 10.1016/j.

Radioactive synovectomy with (90) yttrium and (153) samarium hydroxyapatite in haemophilic joints: preliminary study on radiation safety.

Thomas S, Mendes JD, Souza SA, Lorenzato CS, Assi PE, Pacheco LR, Gabriel MB, Bordim A, Gutfilen B, da Fonseca LM.

Haemophilia. 2013 Jul;19(4):632-6.

The effects of repetitive haemarthrosis on postural balance in children with haemophilia.

Souza FM, McLaughlin P, Pereira RP, Minuque NP, Mello MH, Siqueira C, Villaca P, Tanaka C.

Haemophilia. 2013 Jul;19(4):e212-7.

Prevalence and risk factors for hypertension in hemophilia.

von Drygalski A, Kolaitis NA, Bettencourt R, Bergstrom J, Kruse-Jarres R, Quon DV, Wassel C, Li MC, Waalen J, Elias DJ, Mosnier LO, Allison M. *Hypertension*. 2013 Jul;62(1):209-15.

[Development and evaluation of a dance-based exercise therapy for patients with haemophilia]. [Article in German]

Czepa D, van Ravenstein S, Stäuber F, Hilberg T. Hämostaseologie. 2013;33 Suppl 1:S25-31.

Unfavourable cardiovascular disease risk profiles in a cohort of Dutch and British haemophilia patients.

Fransen van de Putte DE, Fischer K, Makris M, Tait RC, Chowdary P, Collins PW, Meijer K, Roosendaal G, Schutgens RE, Mauser-Bunschoten EP. *Thromb Haemost.* 2013 Jan;109(1):16-23.

RUDOLF-MARX-STIFTUNG

EUROPEAN SYMPOSIUM IV Wildbad Kreuth Initiative – Optimal use of clotting factors and platelets 6-7 May 2016, Freising, Germany

Optimal use of platelets

Published peer reviewed studies 2013-2016

Platelets: transfusion efficacy and effectiveness (outcome)

A randomized noninferiority crossover trial of corrected count increments and bleeding in thrombocytopenic hematology patients receiving 2- to 5- versus 6- or 7-day-stored platelets.

MacLennan S, Harding K, Llewelyn C, Choo L, Bakrania L, Massey E, Stanworth S, Pendry K, Williamson LM.

Transfusion. 2015 Aug;55(8):1856-65; quiz 1855.

Observational study of corrected count increments after transfusion of platelets treated with riboflavin pathogen reduction technology in additive solutions. Drawz SM, Marschner S, Yanez M, Garcia de Coca A, Feys HB, Deeren D, Coene J. *Transfusion.* 2015 Jul;55(7):1745-51.

Risk of bleeding and use of platelet transfusions in patients with hematologic malignancies: recurrent event analysis.

Stanworth SJ, Hudson CL, Estcourt LJ, Johnson RJ, Wood EM, TOPPS study investigators.

Haematologica. 2015 Jun;100(6):740-7.

Impact of platelet transfusion on toxicity and mortality after hematopoietic progenitor cell transplantation.

Christou G, Kekre N, Petrcich W, Tokessy M, Neurath D, Giulivi A, Saidenberg E, McDiarmid S, Atkins H, Bence-Bruckler I, Bredeson C, Huebsch L, Sabloff M, Sheppard D, Tay J, Tinmouth A, Allan DS. *Transfusion.* 2015 Feb;55(2):253-8.

Platelet recovery and survival measured in patients by quantitative polymerase chain reaction of mitochondrial DNA.

Doescher A, Petershofen EK, Hertenstein B, Kraemer D, Casper J, Schmidt JP, Muller TH.

Transfusion. 2015 Jan 55(1):55-63.

Prevalence of platelet-specific antibodies and efficacy of crossmatchcompatible platelet transfusions in refractory patients.

Jia Y, Li W, Liu N, Zhang K, Gong Z, Li D, Wang L, Wang D, Jing Y, Wang J, Shan X. *Transfus Med.* 2014 Dec;24(6):406-10.

Transfusing neonates based on platelet count vs. platelet mass: a randomized feasibility-pilot study.

Zisk JL, Mackley A, Clearly G, Chang E, Christensen RD, Paul DA. *Platelets*. 2014;25(7):513-6.

Impact of prophylactic platelet transfusions on bleeding events in patients with hematologic malignancies: a subgroup analysis of a randomized trial. Stanworth SJ, Estcourt LJ, Llewelyn CA, Murphy MF, Wood EM, TOPPS Study Investigators. *Transfusion.* 2014 Oct;54(10):2385-93.

Platelets for neonatal transfusion - study 2: a randomised controlled trial to compare two different platelet count thresholds for prophylactic platelet transfusion to preterm neonates.

Curley A, Venkatesh V, Stanworth S, Clarke P, Watts T, New H, Willoughby K, Khan R, Muthukumar P, Deary A. *Neonatology*. 2014;106(2):102-6.

Evaluation of platelet cross-matching in the management of patients refractory to platelet transfusions.

Salama OS, AladI DA, El Ghannam DM, Elderiny WE. *Blood Transfus*. 2014 Apr;12(2):187-94.

Cross-match-compatible platelets improve corrected count increments in patients who are refractory to randomly selected platelets. Elhence P, Chaudhary RK, Nityanand S. *Blood Transfus.* 2014 Apr;12(2):180-6.

Implementation of a new platelet pooling system for platelet concentrates led to a higher corrected count increment after transfusion: a comparative observational study of platelet concentrates before and after implementation. Dijkstra-Tiekstra MJ, van de Watering LM, Rondeel JM, Slomp J, de Wildt-Eggen J. *Transfus Med.* 2014 Apr;24(2):99-104.

A positive effect of immune suppression on corrected count increment after platelet transfusion at 1 but not at 24h.

Dijkstra-Tiekstra MJ, Rondeel JM, Slomp J, Smid WM, de Wildt-Eggen J. *Transfus Apher Sci.* 2013 Oct;49(2):189-92.

Effectiveness of platelet transfusion in dengue Fever: a randomized controlled trial.

Khan Assir MZ, Kamran U, Ahmad HI, Bashir S, Mansoor H, Anees SB, Akram J. *Transfus Med Hemother*. 2013 Oct;40(5):362-8.

A pilot study to assess the hemostatic function of pathogen-reduced platelets in patients with thrombocytopenia.

Johansson PI, Simonsen AC, Brown PN, Ostrowski SR, Deberdt L, Van Hoydonck P, Yonemura SS, Goodrich RP. *Transfusion* 2013 Sep:53(9):2043-52

Transfusion. 2013 Sep;53(9):2043-52.

A randomized trial of platelet transfusions over 30 vs 120 minutes: is there an effect on post-transfusion platelet counts?. Dannaway DC, Noori S.

J Perinatol. 2013 Sep;33(9):703-6.

Effects of platelet concentrate storage time reduction in patients after blood stem cell transplantation.

Heuft HG, Goudeva L, Krauter J, Peest D, Buchholz S, Tiede A. *Vox Sang.* 2013 Jul;105(1):18-27.

A no-prophylaxis platelet-transfusion strategy for hematologic cancers.

Stanworth SJ, Estcourt LJ, Powter G, Kahan BC, Dyer C, Choo L;, Bakrania L, Llewelyn C, Littlewood T, Soutar R, Norfolk D, Copplestone A, Smith N, Kerr P, Jones G, Raj K, Westerman DA, Szer J, Jackson N, Bardy PG, Plews D, Lyons S, Bielby L, Wood EM, Murphy MF, TOPPS Investigators. *N Engl J Med*. 2013 May 9;368(19):1771-80.

Post-transfusion increment of platelet count in thrombocytopenic patients treated with platelet concentrates.

Hoque MM, Rahman M, Rahman SM, Habibullah MM, Faruki MA, Rahman KH, Mamun AA, Hossain MA.

Mymensingh Med J. 2013 Jan;22(1):64-8.

Platelets: adverse events

Clinical and quality evaluation of apheresis vs random-donor platelet concentrates stored for 7days. Hussein E.

Transfus Med. 2015 Feb;25(1):20-6.

Hypotensive transfusion reactions in the era of prestorage leukoreduction. Pagano MB, Ness PM, Chajewski OS, King KE, Wu Y, Tobian AA. *Transfusion.* 2015 Jul;55(7):1668-74.

Tolerance of platelet concentrates treated with UVC-light only for pathogen reduction--a phase I clinical trial.

Thiele T, Pohler P, Kohlmann T, Sumnig A, Aurich K, Selleng K, Westphal A, Bakchoul T, Petersmann A, Muller TH, Greinacher A, Seltsam A. *Vox Sang.* 2015 Jul;109(1):44-51.

Transfusion and component characteristics are not associated with allergic transfusion reactions to apheresis platelets.

Savage WJ, Tobian AA, Savage JH, Hamilton RG, Borge PD, Kaufman RM, Ness PM. *Transfusion.* 2015 Feb;55(2):296-300.

Low frequency of anti-D alloimmunization following D+ platelet transfusion: the Anti-D Alloimmunization after D-incompatible Platelet Transfusions (ADAPT) study.

Cid J, Lozano M, Ziman A, West KA, O'Brien KL, Murphy MF, Wendel S, Vazquez A, Ortin X, Hervig TA, Delaney M, Flegel WA, Yazer MH, Biomedical Excellence for Safer Transfusion collaborative.

Br J Haematol. 2015 Feb;168(4):598-603.

Analysis of leucocyte antibodies, cytokines, lysophospholipids and cell microparticles in blood components implicated in post-transfusion reactions with dyspnoea.

Maslanka K, Uhrynowska M, Lopacz P, Wrobel A, Smolenska-Sym G, Guz K, Lachert E, Ostas A, Brojer E.

Vox Sang. 2015 Jan;108(1):27-36.

Transfusion-related adverse events in the Platelet Dose study.

Kaufman RM, Assmann SF, Triulzi DJ, Strauss RG, Ness P, Granger S, Slichter SJ. *Transfusion.* 2015 Jan;55(1):144-53.

Detection and identification of platelet-associated alloantibodies by a solidphase modified antigen capture enzyme-linked immunosorbent assay method and its correlation to platelet refractoriness in multiplatelet concentratetransfused patients.

Jain N, Sarkar S, Philip J. Immunohematology. 2014;30(3):123-5. A comparison of adverse reaction rates for PASC versus plasma platelet units. Cohn CS, Stubbs J, Schwartz J, Francis R, Goss C, Cushing M, Shaz B, Mair D, Brantigan B, Heaton WA. *Transfusion.* 2014 Aug;54(8):1927-34.

Impact of immunoreactive substances contained in apheresis platelet concentrate on postoperative respiratory function in surgical patients receiving platelet transfusion: a prospective cohort study.

Kanai R, Iijima T, Hashimoto S, Nakazawa H, Ohnishi H, Yorozu T, Ohkawa R, Nojiri T, Shimizu M, Okazaki H.

Transfus Med. 2013 Oct;23(5):344-50.

Online reporting system for transfusion-related adverse events to enhance recipient haemovigilance in Japan: a pilot study.

Odaka C, Kato H, Otsubo H, Takamoto S, Okada Y, Taneichi M, Okuma K, Sagawa K, Hoshi Y, Tasaki T, Fujii Y, Yonemura Y, Iwao N, Tanaka A, Okazaki H, Momose SY, Kitazawa J, Mori H, Matsushita A, Nomura H, Yasoshima H, Ohkusa Y, Yamaguchi K, Hamaguchi I.

Transfus Apher Sci. 2013 Feb;48(1):95-102.

Platelet epidemiology, resource use and costs

Cost implications of implementation of pathogen-inactivated platelets. McCullough J, Goldfinger D, Gorlin J, Riley WJ, Sandhu H, Stowell C, Ward D, Clay M, Pulkrabek S, Chrebtow V, Stassinopoulos A. *Transfusion.* 2015 Oct;55(10):2312-20.

Effectiveness of multiple initiatives to reduce blood component wastage. Collins RA, Wisniewski MK, Waters JH, Triulzi DJ, Yazer MH. *Am J Clin Pathol.* 2015 Mar;143(3);329-35.

An audit of the use of platelet transfusions at Universitas Academic Hospital, Bloemfontein, South Africa.

Sonnekus PH, Louw VJ, Ackermann AM, Barrett CL, Joubert G, Webb MJ. *Transfus Apher Sci.* 2014 Dec;51(3);44-52.

Epidemiology of blood component recipients in hospitals of Yazd, Iran. Javadzadeh Shahshahani H, Hatami H, Meraat N, Savabieh S. *Transfus Med.* 2015 Feb;25(1):2-7.

Changing trends in blood transfusion: an analysis of 244,013 hospitalizations. Shehata N, Forster A, Lawrence N, Rothwell DM, Fergusson D, Tinmouth A, Wilson K. *Transfusion.* 2014 Oct;54(10 Pt 2):2631-9.

Prophylactic platelet transfusions in patients with blood malignancies: cost analysis of a randomized trial.

Campbell HE, Estcourt LJ, Stokes EA, Llewelyn CA, Murphy MF, Wood EM, Stanworth SJ, TOPPS Study Investigators.

Transfusion. 2014 Oct;54(10):2394-403.

Where did platelets go in 2012? A survey of platelet transfusion practice in the North of England.

Charlton A, Wallis J, Robertson J, Watson D, Iqbal A, Tinegate H. *Transfus Med.* 2014;24:213-218.

Reducing the financial impact of pathogen inactivation technology for platelet components: our experience.

Girona-Llobera E, Jimenez-Marco T, Galmes-Trueba A, Muncunill J, Serret C, Serra N, Sedeňo M.

Transfusion. 2014 Jan;54(1):158-68.

Evaluation of real-time clinical decision support systems for platelet and cryoprecipitate orders.

Collins RA, Triulzi DJ, Waters JH, Reddy V, Yazer MH. *Am J Clin Pathol.* 2014 Jan;141(1):78-84.

The cost-effectiveness of platelet additive solution to prevent allergic transfusion reactions.

Kacker S, Ness PM, Savage WJ, Frick KD, McCullough J, King KE, Tobian AA. *Transfusion*. 2013 Nov;53(11):2609-18.

Effective reduction of blood product use in a community teaching hospital: when less is more.

Politsmakher A, Doddapaneni V, Seeratan r, Dosik H. *Am J Med.* 2013 Oct;126(10):894-902.

Human platelet-specific antigen frequencies in Indonesian population. Asmarinah, Dharma R, Ritchie NK, Rahayu S, Putricahya E, Santoso S. *Transfus Med.* 2013 Aug;23(4):250-3.

Thrombocytopenia and platelet transfusion in UK critical care: a multicenter observational study.

Stanworth SJ, Walsh TS, Prescott RJ, Lee RJ, Watson DM, Wyncoll DL, Intensive Care Study of Coagulopathy Investigators. *Transfusion*. 2013 May;53(5):1050-8.

The influence of bleeding on trigger changes for platelet transfusion in patients with chemotherapy-induced thrombocytopenia.

Rioux-Masse B, Laroche V, Bowman RJ, Lindgren BR, Cohn CS, Pulkrabek SM, McCullough J.

Transfusion. 2013 Feb;53(2):306-14.

Model Calculations to Quantify Clinical and Economic Effects of Pathogen Inactivation in Platelet Concentrates

Berger K, Bauer M, Schopohl D, Henschler R, Ostermann H. *Onkologie.* 2013 Jan;36:53–59.

Session Summaries & Recommendations

SESSION 1 (Plenary): Clinical use of clotting factors and platelets – Challenges

Moderators & Rapporteurs: Pier Mannucci, Rainer Seitz, Michael Wierer

In his welcome address, **Karl-Walter Jauch**, Medical Director of the clinical centres, introduced the co-organising University of Munich as a major contributor to healthcare and research. He pointed out that blood products were not only essential elements of patient care, but also had a high economic impact. The cost for blood and blood products represented a very significant share of the university hospitals' budget for medicines. The trends in indications and number of transfusions were closely followed. He underlined that optimal use of blood and blood products was necessary in ethical, moral and social respects.

Michael Wierer, representing the main sponsor of the symposium, the European Directorate for the Quality of Medicines & HealthCare (EDQM) of the Council of Europe, also welcomed the participants on behalf of the co-organising Ludwig-Maximilian-University (LMU) Munich, and Paul-Ehrlich-Institut (PEI), Langen (Germany). He highlighted the important role of the EDQM in regulating the blood transfusion sector in Europe. The EDQM Committee (Partial Agreement) on Blood transfusion (CD-P-TS) was responsible for questions related to human blood transfusion, notably as regards quality and safety standards and their implementation, including collection, preparation, testing, storage, distribution and appropriate use, and for proposing ethical, safety and quality standards for professional practices and blood component specifications.

He reiterated that EDQM had been the main sponsor for the 2009 and 2013 symposia, and pointed to the achievements of those meetings, particularly the two Council of Europe Resolutions adopted by the Committee of Ministers on 15 April 2015 on principles concerning haemophilia therapies CM/Res(2015)3, and on principles concerning normal human immunoglobulin therapies for immunodeficiency and other diseases CM/Res(2015)2. He introduced the members of the Scientific Committee and acknowledged their contribution to preparing, once again, a very attractive programme. Finally, he expressed his gratitude to the EDQM Technical Organisation team for their excellent support.

The rationale for the meeting was presented by **Wolfgang Schramm**, University of Munich, Germany, who recalled the merits of the original venue in Wildbad Kreuth and explained the unavoidable move to the premises in Freising. He reminded the audience of two essential statements setting the scene for the Wildbad Kreuth Initiative:

1) Optimal use is to avoid overuse, underuse, and inappropriate use.

2) Optimal use requires administering the right quantity of the right blood product in the right way at the right time to the right patient, and appropriate documentation of both the process and the outcome.

He highlighted important recommendations from the previous meetings, and their major impact on health policy and patient care, particularly the recommendations of the 2013

symposium forming the basis for Council of Europe resolutions.

In the field of haemophilia, the main objectives of the symposium were: critical appraisal of the status quo and identification of gaps in clinical and outcomes research in haemophilia; discussion of perspectives on "innovative products"; and identification of best practice and future needs in haemophilia care. Several developments needed to be discussed: how had the recommendations of the previous meeting been translated into actions; what were best practices in Europe, e.g. in prophylaxis in children and adults, treatment of elderly haemophilia patients, immune tolerance induction, perioperative care; how much factor was needed for adequate treatment; was the access to products equitable? Another much-debated topic was the question of relative immunogenicity of products.

There were a number of reasons to revisit the topic of platelets. The rationale for many aspects of current practices needed further consideration as did the impact of different manufacturing processes for concentrates, and measures, such as testing strategies and pathogen inactivation methods, for minimisation of infectious risks – particularly bacterial contamination. A further very important theme was that of ensuring an adequate supply if the current high level of use continued. Up-to-date, representative real-world data (demographic and epidemiological data, blood usage) would be required to predict future needs in the face of changes ahead with more elderly patients and fewer young donors. Also infectious risks, with newly spreading and emerging pathogens, would remain on the agenda.

As pointed out by previous speakers, the earlier Kreuth symposia had brought about very important and useful recommendations, but there were still controversies in clinical use of blood components which warranted the exchange of views, experiences and priorities in this forum comprising the Council of Europe area and beyond. **Rainer Seitz**, Paul-Ehrilich-Institut, pointed out that the two main topics of the present symposium were different in several respects. In the area of clotting factors we had well-defined indications, a broad spectrum of authorised products, treatment specialists, and a notably well-informed and active patient community. Very exciting aspects of haemophilia treatment were forthcoming implementation and evaluation of novel therapies. In the clinical use of platelets, transfusion triggers were debated, there were diverse producers and methods, and there was no organised patient community.

Besides the clinical issues already indicated in Wolfgang Schramm's speech, there were also some challenges for industry and regulators, particularly the question of how to evaluate the efficacy and safety of those new therapies in the pipeline given only a limited number of patients. The guidelines for clinical evaluation of factor VIII and IX products had been recently updated but met some criticism because of increased requirements, especially towards including more children, and resuming the need for previously untreated patients (PUP) studies for novel products. Evaluating efficacy and safety would be demanding for new products with increased half-life – and even more so for novel approaches such as the bispecific antibody mimicking factor VIII, or therapies which interfere with coagulation inhibitors.

Blood components for transfusion had been discussed at the 2009 symposium. During recent years the trend curves of consumption showed a considerable decline for red cells, but an increased and steady high demand for platelets. The declining use of red cells could be partly explained by an improvement of surgical techniques, implementation of transfusion guidelines, and propagation of patient blood management. However, there were still some controversies in the area of red cells, particularly an ongoing debate on "liberal versus restrictive" transfusion triggers. Recent studies suggested that a restrictive trigger was safe, but the underlying disorder (e.g. cardiac or central nervous system disorders) may be relevant. Further attention and research was also warranted into concerns about a potential immunosuppression which might increase the risk of infection or cancer, relating to storage of red cells for a longer period.

However, for the present symposium, platelets had been chosen as the main topic for several reasons. For platelets, availability and clinical use appeared to be quite diverse across Europe. There were various methods to collect and process platelets, but their impact on platelet integrity and functionality was still incompletely explored. Platelets, more than red cells, carried an infectious risk, particularly of bacterial contamination. And, according to current guidelines for clinical application, the trigger for transfusion and the parameter for monitoring was platelet count (increment). It would be an attractive goal to develop methods suitable for routine use to assess the intended haemostatic platelet functionality *in vitro* and *ex vivo*.

Generally, in order to enable broad and comprehensive evaluation of efficacy and safety of therapies, it would be desirable to continuously collect clinical data of complete patient groups. In haemophilia, patient registries were available but needed to be expanded and interrelated. Clinical registries would also be valuable in the area of blood components for transfusion.

Quality indicators for monitoring the clinical use of blood were addressed in her presentation by **Constantina Politis**, Coordinating Haemovigilance Centre, Athens, Greece. The importance of a quality management system (QMS) in transfusion medicine was now well established; however the development of appropriate quality indicators (QIs) as a tool for quality monitoring and improvement had only recently begun to receive attention in this field. QIs were measurable, objective indicators of the efficiency of the key segments of a system. Constantina Politis was the leader of an EDQM initiated project from 2010 to 2014 that performed an enquiry into QIs for monitoring the clinical use of blood. One of the objectives was to identify and develop a set of commonly accepted performance QIs for monitoring the clinical use of blood and blood components in Europe. The enquiry yielded interesting and encouraging results.

The intriguing question of how novel drugs would change the treatment of haemophilia was addressed by **Flora Peyvandi**, University of Milan, Italy. Novel factor VIII and IX products with extended half-life were entering the market. The prospect of reducing the frequency of injections was attractive – not only as an improvement of quality of life. One of the limitations of haemophilia treatment was the necessity for venous access over a prolonged period; concomitant risks such as infection, sepsis, and thrombosis – particularly in children – may be decreased by reduced frequency of venepuncture. The new factor VIII products showed a 1.4 to 1.6 fold extension of half-life; the optimal dosage schedules and actual clinical benefit needed to be further substantiated. The new factor IX products were shown to extend the half-

life 3 to 5 fold. There were also new factor VIIa products showing a half-life extension in a similar range. Long-term assessment of safety of novel, extended half-life products and an accurate post-registration surveillance was required.

A further option was the development of non-replacement products. One approach was the interference with physiological inhibitors of coagulation, i.e. the inhibition of tissue factor pathway inhibitor (TFPI) by a monoclonal antibody, or the down-regulation of antithrombin III by small interference RNA (ribonucleic acid) (siRNA). Another interesting approach was the chimeric, bi-specific humanised antibody ACE910 directed against FIXa and FX, which mimicked the cofactor function of FVIII by binding FIXa with one arm and FX with the other, placing them in spatially appropriate positions and promoting FIXa-catalysed FX activation.

In recent decades, platelet concentrates had been used as an essential part of treatment of e.g. cancer, haematological malignancies, bone marrow failure and stem cell transplantation. Current challenges using platelet concentrates were discussed by Jean-Pierre Cazenave, ARMESA, Strasbourg, France. There was an increasing use of platelets in medicine, paediatrics and neonatology, surgery and obstetrics. While clinical bleeding was a therapeutic indication, the transfusion threshold in prophylactic use should be modulated according to risk factors. Regarding the type of platelet concentrate there were numerous variables needing further evaluation, such as donor profile, processing (e.g. aphaeresis or buffy coat derived) and modifications (e.g. additive solutions, pathogen inactivation (PI)) and storage conditions. For assessment of clinical efficacy, surrogate markers and/or bleeding grade were currently used; the relationship between corrected count increment (CCI) and bleeding was however unclear. Clinical trials aimed at further exploring indications and adequate posology faced complexity in transfusion medicine due to many diverse underlying disorders and concomitant treatment modalities. A cornerstone of estimating safety was a robust haemovigilance system. Referencing the 2007 Toronto Consensus Conference, Jean-Pierre Cazenave made a strong case for PI of blood components. He presented favourable clinical experiences and haemovigilance records with amotosalen-treated platelets and plasma in Alsace from 2006-2015. Finally, he pointed to the significance of this technology in relation to chikungunya and dengue virus infections in France and overseas departements, and emerging pathogens such as Zika virus.

The related requirements for regulatory mechanisms, such as marketing authorisation (MA) and health technology assessment (HTA) were reviewed by **Jan Müller-Berghaus**, Paul-Ehrlich-Institut. He illustrated the development of scientific committees and working parties at the European Medicines Agency (EMA), and the criteria for MA, the core of which was a favourable benefit/risk balance, without taking into account costs. An important and increasingly used element in the forefront of MA was providing scientific advice to developers. The perspective of HTA bodies was somewhat different from that for MA. The HTA bodies aimed to ensure an advantage over existing therapies in terms of patient-relevant endpoints (e.g. mortality, morbidity, health-related quality of life), demonstrated according to criteria of evidence-based medicine (EBM). As an example, Jan Müller-Berghaus described the system in Germany involving the "Gemeinsamer Bundesausschuss (G-BA)" (Federal Joint Committee), the highest decision-making body of joint self-governance of physicians,

dentists, psychotherapists, hospitals and statutory health insurance funds. The GB-A was supported by the independent Institute for Quality and Efficiency in Health Care (IQWiG) which performed, upon request, systematic assessments of existing scientific clinical literature. A key element of these assessments was evaluating the amount, content and particularly the "quality" of studies (evidence grade), which were the basis for grading the benefit relative to existing therapies. Since clinical trials with new medicinal products would have to cover both sets of requirements, for MA and for HTA, a promising and necessary way forward was to arrange parallel scientific advice, as already initiated in an EMA pilot project.

Current challenges of benefit, effectiveness and risk assessment in coagulation factor and platelet usage were presented by **Karin Berger**, University Hospital of Munich, Germany. In the face of increasingly cost-constrained healthcare systems, resources needed to be allocated to interventions with both proven benefit and safety. It was estimated that adverse drug reactions (ADR) killed 197,000 EU citizens annually, at a cost of 79 billion euros. The direct hospital costs of managing ADR were already substantial. The role of payers had become more prominent, and the influence of HTA bodies was increasing. Payers have a strong focus on relative effectiveness, i.e. the added benefit or incremental safety relative to existing therapies. While pre-authorisation studies assessed the efficacy ("how things work"), for access to the market the effectiveness ("doing the right thing") needed to be assessed in a large sample size, looking at comprehensive patient-relevant endpoints and over a relatively long-term. The European Network for HTA (EUnetHTA) and the EMA had initiated co-operation with the objective of identifying and undertaking specific steps to improve the efficiency of the processes and conditions for patients' timely access to an effective medicine.

Considerations of patient-relevant endpoints and patient-reported outcomes in haemophilia treatment and platelet transfusion should be substantiated. In haemophilia treatment they included mortality and symptoms and complications such as bleeds, arthropathy, osteoporosis, patient-reported endpoints such as health-related quality of life, activity and participation, patient preferences, as well as risks such as inhibitor development. In platelet transfusion they included mortality and bleeding as for haemophilia, and also a different spectrum of risks with immunological and non-immunological adverse reactions and an ever-present infectious risk, particularly due to bacterial contamination. To measure and assess these endpoints was challenging, since collecting "real life data" was not the same as conducting formal clinical studies. An important tool could be patient registries; already 27 European countries had established national registries in the haemophilia area though these needed to be further developed and interrelated. In the field of platelet transfusion the definition of appropriate endpoints for effectiveness research and methodological approaches needed further elaboration, and access to clinical data needed to be improved.

Brian O'Mahony, president of the European Haemophilia Consortium (EHC), gave the views of a patient organisation. EHC had conducted a survey on the 'State of Haemophilia Care in Europe' based on 2014 data from 37 countries. The recommended implementation of Comprehensive Care Centres (CCC) had been achieved in 6 more countries since the previous survey in 2011; however, there were still countries without CCC. 18 countries (three more than previously) had a National Co-ordinating group. Levels of access to home

treatment were above 75% in most countries, but in some countries it was below 50% or even absent. There was a clear increase of access to prophylaxis, both for children and adults. The availability of specialist treatment in paediatrics, emergency care and orthopaedics was good; access to social and psychological support and pain management was much lower, and there were some improvements regarding genetics and physiotherapy. The specific problems of ageing haemophilia patients were apparently not a priority in most countries. The 2013 Kreuth recommendations had been implemented in many cases: for instance prophylaxis for children in 33 countries, and prophylaxis for adults in 31. On the other hand, the recommendation of a minimum factor VIII supply of 3 IU per capita has been implemented in 18 countries and not implemented in 8, with no data provided from 19 countries. All in all, Brian O'Mahony considered the previous Kreuth recommendations, particularly their adoption in official Council of Europe resolutions, as very important in advocating patient needs. Current priorities of EHC were: continued efforts to achieve a supply of > 3, or better > 4 IU per capita; implementation of a national co-ordinating body; improved access to immune tolerance induction; hepatitis C treatment; access to new extended half-life factors at sustainable cost and with individualisation of therapy; and agreed protocols on ageing-patient care.

SESSION 2: Clotting Factors: Impulse Presentations (parallel session)

Moderators & Rapporteurs: Paul Giangrande, Pier Mannucci, Brian O'Mahony, Flora Peyvandi

Coagulation factors had been discussed during previous Wildbad Kreuth Symposia and at this latest meeting in Freising. Many questions continued to be raised about optimal use of coagulation factors, particularly in the context of ongoing therapeutic developments focussed on products with extended half-life.

The wide variations both in availability of coagulation factors and in practices in their clinical use throughout Europe had long been recognised leading, further to the 1999 and 2009 sets of recommendations and as a follow-up to the Kreuth III symposium in 2013, to the drafting of the Council of Europe Resolution 2015(3) on principles concerning haemophilia therapies. Further open questions identified by the specialists attending the 2016 symposium related to: the critical appraisal of the *status quo* for research in haemophilia and identification of gaps; identification of best practices and future demands in haemophilia care; and perspectives on innovative therapeutic products.

It was believed necessary to tackle current issues such as the need for procurement of therapeutic products through national tenders, for the certification of treatment centres, for genotype analysis of patients and carrier detection as well as for centralised collection of treatment-outcome data. Other points raised were: the ageing of the haemophiliac population; the need for treatment of iatrogenic infection with the hepatitis C virus; the management and treatment of patients with inhibitors; and the impact of using factors with extended half-life – notably in relation to trough levels.

An overview of the regulatory aspects in clinical trials for clotting factors was given by **Anneliese Hilger** of the Paul-Ehrlich-Institut, Langen, Germany. The role of regulators and the European approach for approving clinical trials, granting marketing authorisation to new products and organising pharmacovigilance and market surveillance were presented.

A focus on recent changes in the European regulatory framework addressed Article 45 of the Paediatric Regulation ¹ (notably the Paediatric Investigation Plan) as well as requirements for clinical trials of clotting factor VIII products² including the current requirements for determination of inhibitors in previously untreated patients (PUP) and in post-marketing investigations. Over recent decades a constant upward trend could be observed in the number of FVIII and FIX concentrates receiving marketing authorisation. Several innovative therapeutic products to treat haemophilia patients were in development.

¹ Regulation (EC) No 1901/2006 of the European Parliament and of the Council of 12 December 2006 on medicinal products for paediatric use

² 21 July 2011 EMA/CHMP/BPWP/144533/2009 Committee for medicinal products for human use (CHMP) Guideline on the clinical investigation of recombinant and human plasma-derived factor VIII products replaced by EMA/CHMP/BPWP/144533/2009 rev. 1

In order to get the best capture of data from patients suffering from a rare disease like haemophilia, several options were presented. These included clinical trials, registries, pharmacovigilance measures and scientific research options, which should complement each other to clarify unresolved issues (e.g. inhibitor development), in order to identify best practices in haemophilia care.

The latter statement nicely linked in with the next presentation entitled "Inhibitor development in PUP – a comparison of previous studies and the Sippet study" by **Frits Rosendaal**, Leids Universitair Medisch Centrum, the Netherlands.

An introduction to the impact on caregiver burden therapeutic management and costs of handling patients with haemophilia and inhibitors was given. Risk factors for the development of inhibitors were presented with a focus on FVIII product-type linked frequency in PUP and Previously Treated Patients (PTP). It was reported that observational studies and reviews suggested that inhibitor development frequency might be higher for recombinant Factor VIII (rFVIII) than for plasma-derived FVIII concentrate (pdFVIII). In order to confirm this assumption, a randomised trial, the SIPPET study had been conducted. Details on the hypothesis, the design and the analysis of the study were given. Data from 251 patients from 14 countries were analysed for baseline characteristics and inhibitor occurrence leading to the conclusion that patients treated with plasma-derived factor VIII containing von Willebrand factor had a lower incidence of inhibitors than those treated with recombinant factor VIII.³ It was concluded that relevant strategies to minimise inhibitor development in patients needed to be developed.

The next presentation entitled "Inhibitors in Haemophilia, prophylaxis-immune tolerance induction" was given by Hervé Chambost, Faculté de Médecine Aix Marseilles, France. He set the scene by presenting the consequences for the patient, for society and for future therapies of inhibitor development - the major haemophilia treatment-related complication. Solutions should comprise both prevention of inhibitor development and treatment after its occurrence. The nationwide experience of prophylaxis and immune tolerance in France was chosen to illustrate real-life practices. Inhibitor development rates in the French cohort for haemophilia A and B patients and treatment options for bleeding in patients with inhibitors were shown. The rationale for immune tolerance induction (ITI) was presented, as were international registries and a randomised trial⁴ which contributed valuable data toward evidence-based ITI practice. Recent studies on prophylaxis by bypassing agents were also discussed. Finally, prophylaxis and ITI in the life of patients were illustrated by 2 case studies showing that large case-to-case variations in clinical response to these interventions occurred both in adults and infants. It was concluded that treatment of bleeds by bypassing agents was not optimal for many patients with inhibitors and was also a controversial subject for health insurance/reimbursement organisms, and that ITI should be undertaken at least once in each patient in good conditions. It was also reminded that ITI and bypassing agents' prophylaxis represent challenging treatments with rare indications in a rare disease; hence clinical trials

³ http://www.nejm.org/doi/full/10.1056/NEJMoa1516437

⁴ http://www.bloodjournal.org/content/bloodjournal/119/6/1335.full.pdf

and data collection via registries were encouraged to allow the expansion of knowledge in this field.

Paul Giangrande and **Brian O'Mahony** representing the European Haemophilia Consortium (EHC), Brussels, Belgium then addressed the topic of "Access, supply, procurement and tenders".

After recalling the recommendations arising from the previous "Kreuth" meetings in relation to access, supply and procurement of clotting factors, an international survey on tender and procurement procedures in European countries⁵ was presented. Procurement methods, products subjected to tendering procedures and product selection criteria as well as the main representatives involved in tender and procurement boards, were reported for 38 countries. The involvement of clinicians and patient organisations in the tender and procurement processes was reported in only a limited number of countries.

Important outcomes in relation to pricing were that lower prices were obtained for most clotting factor products (except in monopoly situations) when using a tender system rather than an alternative procurement process, and when clinicians and patients organisations were involved in the procurement process (to illustrate these findings, the impact on availability of all products and on price of recombinant products from the UK national procurement and tender processes were presented). Nevertheless, the importance of using the most effective and safe product rather than the cheapest one was emphasised. The usefulness of patient registries to allow forecasting of demand was also noted.

The final impulse presentation entitled "Hemophilia care in Europe and in the USA, current data and future trends" was contributed by **Patrick Robert** of the Marketing Research Bureau Inc, Orange, United States of America. The data from surveys conducted in 70 countries were used to evaluate the current market and future trends in both Europe and the United States of America.

As of 1992, growth of the European market for factor FVIII was mainly driven by the use of rFVIII but since 2008, the rise in consumption of pdFVIII had also contributed significantly to the total annual consumption rate. In 2014 (as had already been the case in previous years, e.g. 2011) a large variation in terms of consumption per capita, ranging from 0.1 to 9.6 International Unit (IU)/capita) was observed between countries in Europe. Changes in Factor VIII consumption between 2011 and 2014 showed a clear upward trend for all countries and particularly in some Central and Eastern European countries⁶.Growth of the European market for factor FIX was also reported and, as of 1998, this was mainly linked to the introduction and expanding use of recombinant FXI (rFIX).

In North America, upward trends in total consumption were also observed for rFVIII (as of 1992) and rFIX products (as of 1996) but market share changes had also been observed in recent years. In the USA, accelerated adoption of prophylaxis occurred from 2002 to 2012 (from 20% to 50% of haemophilia A and B patients treated), but the introduction of the

⁵ Haemophilia. 2015 Jul;21(4):436-43. doi: 10.1111/hae.12720

⁶ where consumption per capita is below the threshold of 3 IU/capita set as a minimum by the Council of Europe Resolution 2015(3) on principles concerning haemophilia therapies

extended half-life recombinant products in 2015 did not elicit many conversions of new patients to prophylaxis. However this may change in the future.

As regards future trends, the gradual market penetration of the extended half-life rFVII and rFIX products was expected to allow stabilisation, if not a drop, in consumption (in terms of total IU number) in Europe and the USA, and a rise in expenditure (price per unit). Meanwhile, on the global market, consumption of recombinant and plasma-derived factors would continue to grow.

The discussions following the impulse presentations centred on the follow-up of previous recommendations, notably those of Kreuth III, and there was broad consensus that experience demonstrated that well-founded consensus recommendations describing essential elements of accepted state-of-the-art could be helpful for developing and raising standards for optimal clinical use at the national and regional levels. The Kreuth III recommendations⁷ were reviewed and it was felt necessary to reconsider the recommended minimum utilisation level of factor VIII in terms of IU per capita. In the light of the progress achieved for haemophilia diagnosis and of the extended indications for prophylaxis, the value of 3 IU per capita required by Res(2015)3 was challenged. The introduction of a similar recommendation for minimum utilisation level of factor IX in terms of IU per capita was proposed. Finally, an agreement was reached on the need to raise the recommended minimum utilisation level of factor VIII to 4 IU per capita and to introduce a recommended minimum utilisation level of factor XI of 0.5 IU per capita of the general population.

Discussions then focussed on new areas for improvement of haemophilia therapy and notably on the desired features of treatments with extended half-life factors. The impact on the sustainability of healthcare systems of robust tendering processes involving both clinicians and patient organisations was widely recognised.

Formal designation of hospitals providing clinical care as European Haemophilia Centres (European Haemophilia Treatment Centres (EHTCs) for local routine care or European Haemophilia Comprehensive Care Centres (EHCCCs), which provide the highest level of care and function as tertiary referral centres)⁸ and equitable access to comprehensive care and replacement therapy in all parts of a country, were recognised to be prerequisites for improvement.

The priority of the access to treatment of iatrogenic infection with the hepatitis C virus for haemophiliacs was also discussed in the context of the recent marketing of new, very active combination medicinal products (e.g. Sofobusvir/Velpatasvir) in Europe. The ageing of the haemophilia population, being a consequence of the broader access to replacement therapy, and access to ITI and to elective surgery patients with inhibitors, were also deemed of primary importance.

Other subjects that were addressed related to choice of products – notably in relation to inhibitors' incidence. In order to gather relevant information and expand current knowledge e.g. regarding treatment outcome, health-related quality of life and genotype analysis for

⁷https://www.edqm.eu/sites/default/files/resolution_cm_res_2015_3_on_principles_concerning_haemophilia_therapies.pdf ⁸ http://www.euhanet.org/docs/Euhanet-European_guidelines_for_the_certification_of_Haemophilia_Centres_2013.pdf

patients with severe haemophilia, options of different data sources like clinical trials, registries and cohort studies were discussed.

After extensive and fruitful discussions in open sessions (with industry representatives) and closed sessions, consensus recommendations addressing those issues were produced.

The overarching objective of the Kreuth initiative, to promote optimal use of blood products, was felt to be particularly valid and many participants expressed their interest and willingness to continue the work in further upcoming meetings in the tradition of the Kreuth initiative.

Recommendations

- 1. Hospitals providing clinical care for people with haemophilia and related disorders are strongly recommended to seek formal designation as either European Haemophilia Comprehensive Care Centre (EHCCC) or European Haemophilia Treatment Centre (EHTC). (Access to comprehensive care and replacement therapy should be equitable in all parts of a country.)
- 2. There should be agreed national protocols or guidelines on management of the ageing patient with haemophilia. Treatment centres are encouraged to include an appropriate general physician in the comprehensive care team.
- 3. The minimum consumption of Factor VIII concentrate in any country should be 4 IU per capita of general population. (Data expressed as units per severe patient should also be collected in parallel in future.)
- 4. The minimum consumption of Factor IX concentrate in a country should be 0.5 IU per capita of general population.
- 5. Treatment for hepatitis C with direct-acting antiviral agents should be provided to all people with haemophilia on a high priority basis.
- 6. Genotype analysis should be offered to all patients with severe haemophilia. Patients shall be free to decide whether or not to take up this possibility. Genetic counselling of the affected person, when given, should encompass the recommendation that genetic relatives of the affected person be advised to seek genetic counselling.
- 7. People with inhibitors should have access to immune tolerance.
- 8. People with inhibitors should also have access to elective surgery at a specialist centre with relevant experience.
- 9. National or regional tenders for factor concentrates are encouraged and should always include both haemophilia clinicians and national haemophilia patient representatives.

- 10. Outcome data including health related quality of life should be collected with appropriate study design, e.g. annualised bleed rates (ABR), mortality, joint score and time off from education or employment.
- 11. Treatment with extended half-life factors should be individualised and protection against bleeding should be improved by increasing trough levels.
- 12. There is increasing evidence that the incidence of inhibitors amongst previously-untreated patients (PUPs) varies between products. Steps should be taken to understand and minimise this risk. (Patients, or their parents, should be involved in discussions related to product choice.)

SESSION 3: Platelets: Impulse Presentations (parallel session)

Moderators & Rapporteurs: Karin Berger, Jean-Pierre Cazenave, Sheila MacLennan, Dorothea Stahl

While coagulation factors had been a topic of all Wildbad Kreuth Symposia, blood components for transfusion had not been on the agenda since 2009. However, as had already been pointed out in Plenary Session 1, since in recent years important questions had been raised about their optimal use, platelets had been included as a main topic of this latest meeting in Freising.

The wide variation in availability and clinical use of platelets throughout the European Community suggested that it was difficult to identify which patients actually needed platelets, particularly those who should receive prophylactic platelet transfusion. A further open question was the impact of the many different aspects of manufacture (e.g. donor profile; pool vs aphaeresis platelet concentrates; pathogen inactivation). It would be difficult, but necessary, to define better criteria as to which platelet component was the right one for the individual patient from a clinical and economic perspective. Thus, whereas platelets had been available for transfusion for decades, many aspects needed further clarification from laboratory and clinical studies. To this end, it was important to define efficacy and effectiveness of platelet transfusions, and to develop better methods and tools to assess the outcome. The scene for the Workshop was set by several expert presentations.

An overview of the current practice in platelet transfusion was given by Gregor Bein, University Hospital of Giessen & Marburg, Germany. In principle, the purpose of platelet transfusion was treatment or prevention of bleeding, but there may be pitfalls in assessing efficacy and safety. For instance, observational studies in coronary artery bypass surgery showed, at first glance, an association between platelet transfusion and serious adverse events and decreased survival, but this was resolved by full adjustment for confounding factors. Experts formulating recommendations such as the Cross-Sectional Guidelines for Therapy with Blood Components and Plasma Derivatives of the German Medical Association, needed to carefully scrutinise the level of scientific evidence. For haematology and oncology patients receiving frequent prophylactic transfusions current evidence suggested that, compared to higher platelet counts, a standard threshold of 10 x 10⁹/L did not increase the risk of bleeding; however the quality of evidence was low. Also the value of prophylactic versus therapeuticonly platelet transfusion was debatable; studies showed that bleeding episodes were reduced, but there was insufficient evidence for reduction of severe (World Health Organisation (WHO) grade 3 or 4) bleeding and mortality. For surgical patients there were only weak data supporting thresholds and, in the area of intensive care unit patients, high-quality data to support or refute the need for prophylactic platelet transfusion were lacking. Another question warranting further research was whether ABO- or Rh-compatible or identical platelet transfusions were necessary. The overview showed that, for many aspects of platelet transfusion, current evidence from observational studies needed to be augmented by welldesigned clinical trials with meaningful assessment of outcomes.

The latter statement nicely linked in with the next presentation entitled "How do we assess clinical efficacy of platelet transfusion?" by **Miguel Lozano**, Department of Haemotherapy and Haemostasis, University Clinic Hospital of Barcelona, Spain. Clinical efficacy of platelet transfusion could be defined for prophylactic transfusion as increasing a patient's platelet count and/or preventing bleeding, and for therapeutic transfusion as stopping bleeding. However, assessing efficacy of platelet concentrates in routine practice as well as in clinical studies was challenging. Tools for platelet concentrates evaluation were *in vitro* studies including studies under flow conditions, *in vivo* studies with radio labelled platelets, clinical studies, and haemovigilance. Typical end points of clinical studies were: corrected count increment (after 1 hour or 24 hours), interval between consecutive platelet transfusions, and application of bleeding scores, e.g. WHO grades of bleeding. In routine practice, monitoring post-transfusion platelet counts was recommended, but there was a considerable variation in the time points. Low corrected count increment could be due to poor quality of the concentrate, but also to patient characteristics such as immune destruction of platelets, massive splenomegaly, or rapid turnover due to active bleeding.

The next presentation entitled "Platelets: infectious risk, testing strategies, pathogen inactivation" was given by Sheila MacLennan, NHS Blood and Transplant, UK. She presented data on transfusion-transmitted infections in the UK 1996 - 2014, as collected by the haemovigilance scheme serious hazards of transfusion (SHOT). The calculated viral risk from blood transfusion in the UK was remarkably low (e.g. for HIV, 1 in 6.47 million donations released). However, there were 43 transmissions of bacterial infections, including 9 deaths from contaminated platelets. Preventive measures, i.e. use of diversion pouches, improved skin cleansing and bacterial screening, implemented by NHSBT in 2011, were effective in reducing the cases of bacterial transmission. The NHSBT process involved samples from 'daughter packs' with a volume of 2 x 8 mL (aerobic and anaerobic), a minimum pre-sample time of 36 hours, and 6 hours quarantine post-loading of samples. Units were released as 'negative to date' with culture to beyond end of shelf life of component (7 days); index component and associated packs were recalled if an initial reactive result triggered further investigation. Another option was pathogen inactivation (PI) with one of several available methods, which were briefly described. Dr MacLennan concluded that, depending on the process used, bacterial screening and PI could be considered of equivalent efficacy, with pros and cons for both. There was increasing use of PI in Europe, though questions remained regarding toxicity and cost-effectiveness of PI; no methods were yet licensed for red cell PI.

A frequent complication of platelet transfusion was allo-immunisation; **Olivier Garraud**, representing the Institut National de la Transfusion Sanguine, Paris, and the Faculty of Medicine of Saint-Etienne, University of Lyon, France, addressed the potential impact of the manufacture of platelet concentrates (PC), i.e. whole blood (buffy coat; (BCPC)) versus single donor ((aphaeresis);(SDAPC)). In France, leukoreduction/leukodepletion (LKD) was mandatory with residual leucocytes < 10⁶ per PC and implemented with a mean efficiency of ~

 $1.5 - 2.5 \times 10^5$ per PC; the residual content of red cells was not specified. Relevant antigens expressed on platelets included A, B (ABO/ABH system), HLA class I with an intense polymorphism, and nearly 30 HPA antigens. Apart from situations where recipients presented with (allo) anti-HLA/HPA antibodies (Abs), there was no specific preference in France of SDAPC over BCPC. Dr Garraud reviewed the known mechanisms and main hypotheses for allo-immunisation, involving an intact innate immune system, antigen-presenting cells, as well as functional T-cell and B-cell adaptive immunity pathways. The picture may be modified by primary or secondary immunodeficiency. There are several mechanisms which may modify allo-immunisation including: CD8+ T-cell suppression; regulatory T- and B-cells; soluble HLA antigens; cytokine pattern due to pre-LKD storage; transfusion related immunemodulation (TRIM); direct versus indirect recognition of antigens, and in the case of frequent transfusion generation of anti-idiotype, tolerogenic antibodies. Allo-immunisation to HLA (± HPA) moieties was recognised more than 5 decades ago, was clearly associated with leucocytes, and boosted after previous transfusions, pregnancies or transplantations. LKD apparently reduced allo-immunisation, though a recent Cochrane meta-analysis did not find substantial strong evidence. In a recent study, Daurat et al. [Transfusion 2016] had found that BCPC immunised significantly less than SDAPC regarding HPA or HLA antigenic specificities; a hypothesis was that this difference might be due to the pre-storage of 15-16 hours before LKD, while LDK of SDAPC occurred "in process". Also allo-immunisation to red cell antigens may occur, and a recent study including a total of 54.202 PC found more allo-immunisations with BCPC (25 cases) than with SDAPC (10 cases). The role of ABOidentical versus ABO-compatible PC transfusion should be further elucidated. Furthermore, the impact of PI, which also inactivates leucocytes, on allo-immunisation should be further studied.

The final presentation entitled "Availability of platelet concentrates in Europe" was contributed by Dorothea Stahl, Section Head Transfusion Medicine, Paul-Ehrlich-Institut, Germany. She used several data sources from market analyses, EDQM and AABB (American Association of Blood Banks) surveys and the German national data base. The definition of PC, with 12 platelet component monographs in the EDQM Guide, highlighted diversity. The Creative Ceutical Report 2015 revealed a wide variation in collection and use of blood components across the EU, and identified 5 countries which reported a relative deficiency in the supply of PC. EDQM data (Richardson C, Quality indicators for monitoring the clinical use of blood in Europe, 2014) showed large differences in the numbers of units per transfused patient for all blood components including PC, and also in the relative share of oncohaematology and surgery in blood component use. In the USA, according to AABB data, SDAPC with 92.4% had become the dominant PC over a period from 2001 to 2013. In Germany, the numbers of manufactured PC had been increasing since 2004 (with ca. 60% SDAPC). For SDAPC, a lower rate of wastage at manufacture was found than for BCPC. Dr Stahl concluded that data on manufacturing and use of PC in Europe existed, but collecting further data for decision-making would be desirable, particularly data on the use of the different manufacturing protocols which might help in the understanding of the interdependencies of the manufacturing protocol with quality, safety, and efficacy of the PC. Currently there was insufficient linking of data on the amounts of PC transfusion with epidemiological data and the underlying transfusion protocols and clinical and haemovigilance data in order to evaluate different practices of platelet use. Clinical studies and "real world data" from patient registries might provide tools to enhance the information needed. Linking data with a broader scientific context, using a systems biology approach or systems medicine approach may be a way forward, as illustrated by several examples.

The discussions following the presentations centred on the areas of safety, efficacy and appropriate use of PC. It became evident that there were profound differences in resources available among the participating member states. However experience with previous Kreuth statements, e.g. for haemophilia treatment, suggested that well-founded recommendations describing essential elements of accepted state-of-the-art could be helpful for developing and raising standards.

There was broad consensus that pre-storage leukodepletion should be implemented. Of the transfusion-transmitted infections, bacterial contamination was currently the most frequent, and the participants agreed on the necessity for measures to be taken to reduce this risk. Since contaminating bacteria needed some time to multiply in stored components, limiting storage time may reduce the risk although significant contamination, leading to severe morbidity, had been reported in components stored for as short a time as 2 days. A measure with proven efficacy was PI, with several approved methods being available. Another successful approach was bacterial screening, where different strategies may be followed. As had already been pointed out in the presentation by Sheila MacLennan, bacterial screening and PI could be considered of equivalent efficacy, with pros and cons for both. As a further element to increase safety, particularly to reduce immune-mediated reactions, the use of platelet additive solutions (PAS) was proposed.

The participants unanimously agreed that, in order to improve the scientific evidence concerning efficacy of PC, more relevant clinical endpoints for prophylactic and therapeutic use needed to be defined. The clinical evaluation should focus specifically on aspects of manufacture such as different types of products e.g. BCPC versus SDAPC, or the impact of using PAS. Also the significance of ABO-compatibility should be further explored. A particular issue necessitating further research was refractoriness to PC transfusion. In the face of many open questions concerning clinical evaluation of PC, more European public funding for clinical studies was advocated.

The overarching objective of the Kreuth initiative, to promote optimal use of blood products, was felt to be particularly valid with respect to PC transfusion. Comprehensive documentation of transfusion episodes was identified as a basic but essential step. Documentation of patient characteristics, indication and outcome were indispensable for both monitoring therapy and haemovigilance. Elements of quality assurance, particularly a system of audits and feedback, should be implemented in each hospital. In order to enable cross-sectional evaluation, and with a view to augmenting the evidence concerning efficacy and safety of PC, the use of patient registries and/or pragmatic trials should be considered. In order to support meaningful evaluation and monitoring optimal use, key performance indicators were needed.

Further to fruitful and extensive discussions in open sessions (with industry representatives) and closed sessions, the platelet working group produced consensus recommendations.

The optimal use of platelets was a "new" or at least "re-emerging" topic of the Kreuth symposia. The general impression at the end of the platelet workshop was that it was not an easy topic, given the multitude of open issues and the lack of data concerning many of them. It was also felt that the "platelet group" would need more time for in-depth discussion of many remaining questions. To this end, many participants expressed their interest and willingness to continue the work in further upcoming meetings in the tradition of the Kreuth initiative.

Recommendations

- 1. Pre-storage leucodepletion should be implemented to reduce platelet refractoriness and immunisation, and the risk of certain infections.
- 2. Of the transfusion-transmitted infections, bacterial contamination is currently the most frequent; it is strongly recommended that measures be taken to reduce this risk. Effective measures include limiting storage time, pathogen inactivation, and bacterial screening.
- 3. Consideration of the use of platelet additive solutions (PAS) is recommended to reduce immune mediated reactions.
- 4. More data need to be generated on the impact on platelet concentrates (PC) efficacy and safety of different methods of manufacture (e.g. aphaeresis versus whole blood derived; use of platelet additive solutions).
- 5. Comprehensive documentation of transfusion episodes (e.g. relevant patient characteristics, indication, outcome) is essential.
- 6. Key performance indicators are needed to monitor PC use.
- 7. For quality assurance of PC transfusions, clinical audit and feedback in each hospital are recommended.
- 8. More relevant clinical endpoints for prophylactic and therapeutic use of PC should be defined.
- 9. Strategies for management of refractoriness should be further evaluated.
- 10. The clinical significance of ABO compatibility of PC transfusion should be further studied.

- 11. The use of patient registries and/or pragmatic trials to improve information on outcomes should be explored.
- 12. In order to promote the implementation of these recommendations, more European public funding for clinical studies is advocated.

Optimal use of clotting factors and platelets

The Council of Europe is the continent's leading human rights organisation. It comprises 47 member states, 28 of which are members of the European Union. The European Directorate for the Quality of Medicines & HealthCare (EDQM) is a directorate of the Council of Europe. Its mission is to contribute to the basic human right of access to good quality medicines and healthcare and to promote and protect public health.

COUNCIL OF EUROPE

